Loading...
机构名称:
¥ 1.0

这个科学启动项目涉及使用机器学习(ML)方法对蒙特卡洛(MC)数据集进行分析。该数据集由实验性Hadronic Physics Group(Hadrex)与Alice实验直接合作,该实验与大型强子对撞机(LHC)直接合作。该研究专门针对多震颤的重子(例如ξ⁻,ξ⁺等)以及随后的衰减,这是一个称为“级联衰变”的过程。主要目的是使用生成机器学习模型通过其次要衰减来重建这些粒子。通过综合与实验观察相吻合的现实数据,该项目旨在优化常规的高能物理学分析并增强数据分析算法,以搜索稀有可观察物。为了应对这一挑战,采用了条件表格生成对抗网络(CTGAN)模型。结果表明,CTGAN在复制可变分布的同时有效地保留了原始数据的物理和内在相关性,从而增强了其改善高能物理学数据驱动研究的潜力。

使用机器学习方法在高能量物理学中的数据分析

使用机器学习方法在高能量物理学中的数据分析PDF文件第1页

相关文件推荐

2025 年
¥2.0
2024 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0