抽象机票定价是一个复杂而动态的过程,受到各种因素的影响,包括需求波动,季节性变化和竞争策略。准确的价格预测对于两家航空公司,最大化收入和客户以确保最佳交易至关重要。传统方法通常无法捕获机票定价的复杂和快速变化的模式。随着机器学习算法的出现,增强了票价预测的准确性和可靠性的潜力越来越大。本文旨在使用ML算法根据航空公司飞行数据来预测票价,并比较ML算法的性能。本文的次要目标是确定影响航空票价的主要因素。本文使用了从开放式来源获得的您和PG的飞行价格数据集。最终数据集由从2022年6月1日至2022年8月30日的962个记录组成,共三个月,其中包括19个不同的变量。将统计测试和ML算法应用于最终数据集。本文比较了培训和测试阶段中的MAE,MSE,RMSE和R2等性能指标,以预测机票价格的各种ML模型。根据模型培训和测试结果,最佳算法是GPR,R2:0.86(训练)和R2:0.90(测试)。这些发现与现有文献一致,进一步验证了某些模型在特定环境中的卓越功效,并证明了该领域的重大进展。本文通过比较各种机器学习算法在预测航空公司票价上的有效性,为模型性能和关键价格确定的因素提供新的和宝贵的见解,从而为文献做出了贡献。
主要关键词