印度经济的支柱之一是农业部门。即使降雨对农民至关重要,预测降雨已成为近年来的巨大挑战。如果农民可以准确估计何时下雨,他们可能会更好地计划自己的作物并避免问题。对天气的改变正在加快全球变暖,这对人类和自然世界都有毁灭性的影响。由于空气变暖和海平面上升,洪水变得越来越普遍,干旱在养殖领域变得越来越普遍。不良气候变化会导致过度降雨,既不是季节性也不适当。预测降水的能力是理解天气模式的强大工具。这项研究的总体目标是帮助客户在农业,研究和发电部门等,以及其他影响气候变化的重要性以及影响它的参数,例如温度,湿度,降水,风速和降雨量的预测。很难预测降雨,因为它也取决于地理区域。机器学习是人工智能的动态分支,有助于天气预测。为了预测天气,本研究将使用具有来自UCI存储库的几个属性的数据集。建立一种更准确的方法,用于使用机器学习分类算法预测降雨量,这是这项研究的主要目标。关键字: - 机器学习,分类算法降雨预测系统
主要关键词