虽然机械测试和微观结构特征等破坏性评估方法通常用于评估添加性制造的(AM)材料和零件的机械性能,但非破坏性评估(NDE)方法可以提供重要的见解,而无需分区和损坏零件。由于缺陷的存在(例如孔,缺乏融合,表面粗糙度等)通常会显着影响AM零件的机械性能,了解关键特征(例如类型,大小和分布),这些缺陷的位置是管理绩效期望以及资格和可用性的关键。
3.2.4.1 讨论 — 适用于 DED 的电弧工艺表面上基于气体保护工艺,即 GTA、PA、PTA 和 GMA 及其变体。3.2.5 建成状态,adj— 参见建成状态、ISO 52900 和 3.3。3.2.6 构建平台,n— 参见构建平台。ISO/ASTM 52900 3.2.6.1 讨论 — 在 ISO/ASTM 52900 中,机器的构建平台被定义为提供一个表面的底座,零件的构建在该表面之上,并在整个构建过程中受到支撑。在 DED 中,构建平台也可以是需要修复的组件,也可以是非平面的。3.2.7 捕获效率,n— 从沉积头喷出的粉末中融入构建结构的比例。通常以百分比表示。 3.2.8 载气,名词——通常为惰性气体,用于将粉末从沉积头运送到熔池,在某些系统中也用于辅助将粉末从储存系统运送到沉积头。 3.2.9 铸件,名词——一根金属线,松散地抛在地板上的一段金属线所形成的圆的直径。 3.2.10 包层,名词——参见包层,AWS A3.0/A3.0M。 3.2.11 横流,名词——通常为惰性气体,方向垂直于受保护镜头的光轴。 3.2.12 循环,名词——单个循环,其中一个或多个组件、特征或修理在机器的构建空间中分层构建。 ISO/ASTM 52900 3.2.12.1 讨论——DED 非常适合修理、特征添加和再制造应用。在本指南中,无论是构建完整部件、其一部分还是修复,术语“DED 构建循环”和“DED 沉积循环”的使用都是同义词。 3.2.13 缺陷,名词——参见缺陷,术语 E1316。 3.2.14 沉积头,名词——向熔池输送能量和原料的装置。 3.2.15 沉积速率,名词——参见沉积速率,AWS A3.0/A3.0M。 3.2.16 定向能量沉积 (DED),名词——参见 ISO/ASTM 52900 和 3.3。 3.2.17 进料,名词——将材料(线材或粉末形式)输送到熔池的机制。 3.2.18 填充金属,名词——参见填充金属,AWS A3.0/A3.0M。 3.2.19 裂纹,名词——参见裂纹,术语 E1316。 3.2.20 焦斑,名词——参见焦斑,AWS A3.0/A3.0M。 3.2.21 功能梯度材料,名词——在成分或结构(或二者)上随空间变化的沉积材料,导致材料性质的相应变化。 3.2.22 气体金属电弧(GMA),名词——参见气体金属电弧焊(GMAW),AWS A3.0/A3.0M。 3.2.22.1 讨论——AWS 定义中的“焊接”一词表示两块或多块材料的连接。由于 DED 不是这种情况,因此删除了“焊接”一词。其余术语描述电弧物理学。
定向能量沉积 (DED) 工艺为零部件制造和维修应用提供了许多独特的功能。近年来,许多行业(包括航空航天、能源、采矿、船舶、工具和建筑)已开始意识到这些工艺的好处,而其他行业仍处于采用的初期阶段。
增材制造 (AM) 在众多行业领域得到快速应用,应用范围广泛,这要求采用方法来表征和降低材料缺陷带来的风险。对于安全关键型应用,了解增材制造中典型的材料特性和工艺缺陷(例如孔隙、未熔合、表面粗糙度等)如何影响组件完整性尤为重要。由于缺乏历史数据、增材制造工艺可能存在变化以及技术发展迅速,理解这些影响变得十分复杂。在疲劳关键型应用中,AM 产品的鉴定、认证和安全持续使用不仅取决于对损伤机制和典型增材制造缺陷相关行为的基本了解,还取决于开发用于预测疲劳寿命和断裂风险的稳健、经过验证的模型和软件。此外,需要评估当前疲劳和断裂标准的适用性,以确定生成必要支持材料数据的标准化差距。
ASTM International 人工智能 (AI) 政策 ASTM International 禁止将 ASTM 标准和相关 ASTM 知识产权 (“ASTM IP”) 纳入任何形式的人工智能 (AI) 工具,例如 ChatGPT。此外,未经 ASTM 总裁明确书面许可,也禁止使用 AI 创建 ASTM IP 衍生产品。如果发生此类使用,ASTM 将暂停被许可人对 ASTM IP 的访问权限,并将考虑采取进一步的法律行动。
4.1 测试方法 A — 取样阀 — 直接过滤 — 在加压管线中安装与图 1 所示类似的取样阀。图示阀门具有自封闭功能和公鲁尔出口接头。这种阀门设计最大限度地减少了外部污染的可能性。用于取样的任何阀门都应以减少或防止细菌滞留在其内表面的方式构造,并且应易于消毒。细菌监测器连接到图示取样阀的鲁尔出口,或以适当的方式连接到等效阀门。水样直接通过监测器,并在过滤后测量流出物体积。然后采用测试方法 F60 对样品进行细菌学检查。
1.1这种做法旨在帮助制定正式的污染控制计划,尤其是航空临界表面。要求可以由客户或系统集成商或子系统级别在系统级别上建立。子系统要求可以由负责任的子系统供应商施加,也可以从系统组织中阐明(4.7)。所需的细节和清洁水平的程度可能会随着要构建的特定应用和类型而变化,但是污染控制的所有方面都必须包括在最终计划中。因此,必须考虑将以下每个元素纳入污染控制计划(CCP):1.1.1可交付的可交付硬件解决颗粒,分子或生物污染物或其组合的清洁度要求。指定污染限制和任何预算分配。1.1.2实施计划,以实现,验证和维护指定的清洁要求。指定材料和过程控制,清洁技术,验证测试,进行和预防计划,运输控制以及差异的纠正措施。1.1.3环境控制,包括要使用的清洁设施,设施维护和监视时间表。1.1.4人员和运营控制,包括操作程序,限制,培训,动机和组织责任,包括组织或工具的CCP实施和验证。
注 1 — 除非另有说明,25 和 125°C 时的公差为±1°C,23°C 时的公差为±2°C。相对湿度的公差为±5%。1.3 可以测试多种类型的有机、聚合物和无机材料。这些包括聚合物灌封化合物、泡沫、弹性体、薄膜、胶带、绝缘材料、热缩管、粘合剂、涂层、织物、扎带和润滑剂。材料可以在“收到”状态下进行测试,也可以通过各种固化规范进行测试准备。1.4 本试验方法主要是材料的筛选技术,由于配置、温度和材料加工的差异,它不一定适用于计算系统或部件的实际污染。1.5 材料验收和拒收的标准应由用户根据具体部件和系统要求确定。历史上,1.00% 的 TML 和 0.10% 的 CVCM 一直被用作航天器材料拒收的筛选水平。1.6 根据本测试方法被视为可接受的材料的使用并不能确保系统或组件不受污染。因此,应根据需要使用后续功能、开发和鉴定测试,以确保材料的性能令人满意。1.7 本标准并不旨在解决与其使用相关的所有安全问题。本标准的使用者有责任在使用前建立适当的安全和健康实践并确定监管限制的适用性。
11. 测试方法摘要 11.1 碳在氧气流中燃烧转化为二氧化碳。 11.1.1 热导率测试方法——二氧化碳被适当等级的沸石吸收,通过加热沸石释放,并被氦气或氧气吹入色谱柱。洗脱后,在热敏电阻型电导池中测量二氧化碳的量。参考图 1。 11.1.2 红外线 (IR) 吸收,测试方法 A——二氧化碳的量通过红外线 (IR) 吸收来测量。二氧化碳 (CO 2 ) 吸收红外光谱中精确波长的红外能量。当气体通过传输红外能量的池体时,此波长的能量被吸收。所有其他红外能量都被精确的波长滤波器消除,不会到达检测器。因此,红外能量的吸收只能归因于 CO 2 ,其浓度通过检测器上的能量变化来测量。一个电池既用作参比室,又用作测量室。在一段时间内,对总碳(以 CO 2 表示)进行监测和测量。参见图 2。11.1.3 红外 (IR) 吸收,测试方法 B — 检测器由一个 IR 能量源、一个独立的测量室和参比室,以及一个用作平行板电容器一个板的隔膜组成。在样品燃烧过程中,CO 2 及其氧气载体流过测量室,而只有氧气流过参比室。来自 IR 源的能量穿过两个室,同时到达隔膜(电容器板)。部分 IR 能量被测量室中的 CO 2 吸收,而穿过参比室时则不会被吸收。这会造成到达隔膜的 IR 能量不平衡,从而使隔膜变形。这种变形会改变固定电容,产生电信号变化,该变化被放大以用于测量 CO 2 。在一段时间内,对总碳(以 CO 2 表示)进行监测和测量。参考图 3。