该研究采用了跨六个阶段的实验设计。首先,文献综述确定了FMD爆发的关键风险因素,指导数据源选择。第二,历史数据是从各种来源追溯收集的。使用包括平均插补,重复的删除和可视化的技术,重点是数据预处理,以及检测分布变化的双向统计方法。在第四阶段,包括随机森林,支撑矢量机,分类和回归树,梯度提升机,逻辑回归,K-Nearest邻居和ADABOOST在内的七种ML算法,同时使用数据增强技术同时解决了类不平衡。第五和第六阶段涉及测试和验证这些模型以评估其在分布变化下的性能。探索了两种方法以增强模型性能:一种以数据为中心的方法,该方法集成了包括边界效果,主动学习,概率校准和伪标记的技术,以及一种以模型为中心的方法,涉及调整和堆叠随机森林,梯度增强机器和Adaboost。
糖尿病被认为是最致命的糖尿病是一种常见的慢性疾病。也会引起许多疾病的出现,尤其是神经病,肾病和视网膜病。在这种情况下,通过准确评估症状并早期诊断该疾病非常重要。本研究旨在提供一个有效的模型,可以在早期以最佳准确性来确定糖尿病的风险。为此,合奏方法支持糖尿病风险预测中经常使用的分类算法。首先,通过使用520个样本的数据集分别分别分析了幼稚贝叶斯(NB),树木-J48,K最近的邻居(KNN)和顺序最小优化(SMO)分类器的性能,并使用来自Sylhet糖尿病医院患者的直接问卷收集的520个样本的数据集,Sylhet,Bangladesh,Bangladesh,Bangladesh。然后,研究了Adaboost,Bagging和随机子空间(RSS)算法对分类器成功的影响,并表明基于Adaboost方法的J48分类器具有最佳准确性。最后,应用包装器子集评估(WSE)特征提取算法用于降低估计成本并增加分类成功。因此,使用建议的分类器方法减少数据集实现最佳准确性(99%)。
马来西亚国家健康和发病率调查显示,五分之一的马来西亚成年人被诊断出患有糖尿病。它存在于不同年龄段的人群中,尤其是在年轻人中发现的,因为只能在某些需要特殊设备的地方进行测试。必须开发能够产生高精度预测的工具。这项研究经过了选择一个辅助数据集的选择,该数据集包含17个属性,没有无关的数据和缺失值,并将其作为基本算法模型,支持向量机(SVM)以及机器学习知识开发的集合模型。使用SelectKest为每个模型选择了数据集中的前五个最受影响的功能,以在数据集上进行训练和测试,并实现了更高的准确性预测结果。比较了三个模型的预测,并在集合模型中合并了Adaboost和SVM的结果。开发了糖尿病预测原型,以比较使用观察到的数据集比较三种方法的准确性。这项研究得出结论,整体模型给出了糖尿病预测的最高精度,并且可能被认为是糖尿病预测工具中最合适的方法。
医疗保健专家近年来一直在使用越来越多的机器学习来提高患者的预后并降低成本。此外,机器学习已在各个领域应用,包括疾病诊断,患者风险分类,定制治疗建议和药物开发。机器学习算法可以从电子健康记录,医疗图像和其他来源审查大量数据,以识别模式并做出预测,这些数据可以支持医疗保健专业人员和专家,以做出更明智的决策,增强患者护理以及确定患者的健康状况。在这方面,作者选择通过正确的糖尿病预测分类速率比较三种算法(逻辑回归,adaboost和幼稚的贝叶斯)的性能,以确保准确诊断的有效性。这项工作中应用的数据集是从范德比尔特大学机构存储库中获得的,并且是公开可用的数据。研究确定了三种算法在预测方面非常有效。主要是,逻辑回归和adaboost的分类率高于92%,而天真的贝叶斯算法的分类率达到了90%以上。
丙型肝炎是一种疾病,可以从初始无症状阶段发展为慢性感染,如果没有治疗,可能导致肝硬化和肝癌。丙型肝炎的诊断需要至少两种不同类型的测试:血清学测试和分子测试。这些测试方法对患者施加了经济负担,并为患者流失贡献。这项研究的目的是使用基于常见的血液测试数据的各种机器学习技术来预测该疾病,以实现患者的早期诊断和治疗。In this study, we integrated features from lit- erature and original data, applying six machine learning algorithms (logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), adaptive boosting (AdaBoost)) to forecast hepatitis C. The performance of these techniques was compared using metrics such as accuracy,精确,召回,F1得分,接收器操作特征(ROC)和曲线下的面积(AUC),以识别该疾病的合适方法。来自UCI数据集的结果表明,Adaboost的准确性最高(97.8%)和AUC(0.994),使其成为预测乙型肝炎的有效且具有成本效益的方法。
摘要 - Billy Buddy反对网络欺凌的“基本上是为解决网络欺凌的安全空间,包括两个主要模块:管理员和用户。管理员模块包括安全登录,状态数据分析和用户管理,而用户模块允许注册,事件报告,与已解决类似问题的其他人进行讨论以及标记解决问题的问题。该平台通过OTP,配置文件管理为用户提供了密码恢复选项,并使用高级机器学习算法,其中包括随机森林,MLP分类器和ADABOOST来检测和分类网络欺凌。它是在Python,MySQL和Django中开发的,在HTML,CSS和JavaScript中具有直观的接口。“比利·巴迪(Billy Buddy)针对网络欺凌”的目的是针对一个有用的环境,用户可以利用先进的技术来解决这个严重的社会问题,并使数字世界成为更安全的地方,从而在其中用户可以报告和解决网络欺凌事件。Index Terms - Cyberbullying, Machine Learning, Random Forest, MLP Classifier, AdaBoost, Flask, Django, MySQL, Python, User Module, Admin Module, Problem Registration, Chat Support, Profile Management, State- wise Analysis, Data Classification, Web-based Platform, Cyberbullying Prevention, User Interaction, Secure Login, Dashboard, Sentiment Analysis.
摘要:准确预测客户流失对于希望增强客户保留和维持增长的电子商务企业至关重要。这项研究评估了各种机器学习模型在预测客户流失方面的性能,包括支持向量机(SVM),逻辑回归(LR),极端梯度增强(XGBOOST),随机森林(RF),决策树(DT)和适应性增强(Adaboost)。通过评估每个模型的准确性,精度,召回和F1分数,我们确定集合学习方法,尤其是随机森林和XGBoost,都是优越的。随机森林模型的出色精度为96.81%,精度为95.20%,召回98.70%,F1得分为96.92%。同样,XGBoost的精度为96.27%,精度为93.72%,召回99.31%,F1得分为96.43%。SVM和决策树模型显示出中等的有效性,而逻辑回归和Adaboost的性能指标较低。这些结果突出了整体技术在处理搅拌预测的复杂性方面的强度。该研究得出的结论是,利用高级机器学习模型,尤其是集合方法,可以显着提高客户流失预测的准确性和可靠性。这种进步使电子商务企业能够实施积极有效的客户保留策略,降低流失率并提高客户忠诚度。未来的工作应考虑合并其他功能,并将这些模型应用于现实世界数据集,以进一步验证和完善其预测能力。关键字:客户流失,数据分析,电子商务,机器学习,预测建模。
准时毕业对于学术成功,影响时间,成本和教育质量至关重要。Hang Tuah University Pekanbaru(UHTP)目前正在努力实现其准时毕业率75%的目标。这项研究介绍了一种使用机器学习技术的创新方法,尤其是与堆叠机器学习Optuna Smote(SMLOS)的合奏学习,以解决此问题。我们的主要目标是提高数据分类精度,以有效地预测学生毕业时间。我们采用算法,例如K-Nearest邻居(KNN),支持向量机(SVM),决策树(C4.5),随机森林(RF)和Naive Bayes(NB)。这些与元模型结合使用,包括逻辑回归(LR),Adaboost,XGBoost,LR+Adaboost和LR+XGBoost,以创建一个强大的预测模型。为了解决阶级失衡,我们应用了合成少数族裔超采样技术(SMOTE),并利用Optuna进行超参数调整。调查结果表明,使用Adaboost Meta模型的Smlos达到了95.50%的最高精度,超过了以前的模型的性能,平均含量约为85%。这种贡献证明了将SMOTE用于类不平衡和Optuna进行超参数优化的有效性。将此模型整合到UHTP的学术信息系统中,促进了对学生数据的实时监控和分析,为通过更准确的学生绩效预测提供了一种新颖的解决方案来促进智能校园。此技术不仅有益于预测学生毕业,还可以应用于各种机器学习任务以提高数据分类的准确性和稳定性。
摘要 — 第六代 (6G) 无线网络的核心愿景之一是积累人工智能 (AI),以实现万物互联 (IoE) 的自主控制。特别是,必须通过分析人员、数据、流程和事物等 IoE 的上下文指标来维护 IoE 服务交付的质量。然而,当 AI 模型为网络服务提供商带来解释和直觉的缺失时,挑战就随之而来。因此,本文为质量感知的 IoE 服务交付提供了一个可解释的人工智能 (XAI) 框架,该框架同时支持智能和解释。首先,通过考虑网络动态和 IoE 的上下文指标来制定质量感知的 IoE 服务交付问题,其目标是最大化每个 IoE 服务用户的信道质量指数 (CQI)。其次,设计一个回归问题来解决所提出的公式问题,其中通过 Shapley 值解释估计上下文矩阵的可解释系数。第三,通过使用基于集成的回归模型来确保对矩阵之间上下文关系的解释以重新配置网络参数,实现了支持 XAI 的质量感知 IoE 服务交付算法。最后,实验结果表明,AdaBoost 和 Extra Trees 的上行链路改进率分别为 42 .43% 和 16 .32%,而下行链路改进率高达 28 .57% 和 14 .29% 。然而,基于 AdaBoost 的方法无法维持 IoE 服务用户的 CQI。因此,与其他基线相比,所提出的基于 Extra Trees 的回归模型在缓解准确性和可解释性之间的权衡方面表现出显着的性能提升。索引术语 — 万物互联、可解释人工智能、上下文矩阵、Shapley 系数、回归、服务质量。
目的:儿童脑动静脉畸形 (bAVM) 破裂与大量发病率和死亡率相关。先前研究儿童期 bAVM 出血表现的预测因素的研究有限。机器学习 (ML) 在应用于大型数据集时具有很高的预测准确性,可以成为预测出血表现的有用辅助手段。本研究的目的是将 ML 与传统回归方法结合,基于回顾性队列研究设计来识别儿科患者出血表现的预测因素。方法:作者使用 19 年研究期间从 186 名儿科患者获得的数据,实施了三种 ML 算法(随机森林模型、梯度提升决策树和 AdaBoost)来识别对预测出血表现最重要的特征。此外,使用逻辑回归分析来确定出血表现的显著预测因素作为比较。结果 三种 ML 模型一致认为 bAVM 大小和患者就诊年龄是预测出血表现的两个最重要因素。在多变量逻辑回归中,就诊年龄并不是出血表现的重要预测因素。梯度提升决策树/AdaBoost 和随机森林模型分别将 bAVM 位置和并发动脉瘤确定为第三重要因素。最后,逻辑回归将左侧 bAVM、小 bAVM 尺寸和并发动脉瘤的存在确定为出血表现的重要风险因素。结论 通过使用 ML 方法,作者发现了使用传统回归方法无法识别的出血表现预测因素。