Loading...
机构名称:
¥ 1.0

准时毕业对于学术成功,影响时间,成本和教育质量至关重要。Hang Tuah University Pekanbaru(UHTP)目前正在努力实现其准时毕业率75%的目标。这项研究介绍了一种使用机器学习技术的创新方法,尤其是与堆叠机器学习Optuna Smote(SMLOS)的合奏学习,以解决此问题。我们的主要目标是提高数据分类精度,以有效地预测学生毕业时间。我们采用算法,例如K-Nearest邻居(KNN),支持向量机(SVM),决策树(C4.5),随机森林(RF)和Naive Bayes(NB)。这些与元模型结合使用,包括逻辑回归(LR),Adaboost,XGBoost,LR+Adaboost和LR+XGBoost,以创建一个强大的预测模型。为了解决阶级失衡,我们应用了合成少数族裔超采样技术(SMOTE),并利用Optuna进行超参数调整。调查结果表明,使用Adaboost Meta模型的Smlos达到了95.50%的最高精度,超过了以前的模型的性能,平均含量约为85%。这种贡献证明了将SMOTE用于类不平衡和Optuna进行超参数优化的有效性。将此模型整合到UHTP的学术信息系统中,促进了对学生数据的实时监控和分析,为通过更准确的学生绩效预测提供了一种新颖的解决方案来促进智能校园。此技术不仅有益于预测学生毕业,还可以应用于各种机器学习任务以提高数据分类的准确性和稳定性。

使用

使用PDF文件第1页

使用PDF文件第2页

使用PDF文件第3页

使用PDF文件第4页

使用PDF文件第5页

相关文件推荐

2024 年
¥1.0
2022 年
¥2.0
1900 年
¥18.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2023 年
¥2.0
2025 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0