电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。 依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。 本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。 在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。 使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。 ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。 通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。 模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖电子邮件:paredes.g@aluno.ifsp.edu.br摘要钻探浪费的适当管理,尤其是页岩振动器的残留固体中的流体含量,仍然是石油和天然气运营中的一项关键挑战。依靠实验室分析的传统方法引入了重大延迟,从而阻碍了实时过程优化。本研究提出了一个基于人工神经网络(ANN)的虚拟传感器,以实时预测振动筛选残留固体中的流体含量。在不同的操作参数下,从工业页岩振动器系统中收集了实验数据,包括运动速度,进料流量和屏幕倾斜度。使用TensorFlow开发了多层感知器模型,该模型具有输入归一化,辍学正则化和随机梯度下降的优化训练。ANN体系结构达到的平均绝对误差为0.03,损失为0.002,证明了强大的收敛而不拟合。通过t检验进行的统计验证证实,预测值和实验值之间没有显着差异(测试数据的p值为0.67,整个数据集为0.85)。模型在稳定的操作条件下的准确性可以连续监视而无需其他硬件,从而解决了行业对延迟实验室的依赖
主要关键词