实施机器学习来进行预测性主持人涉及多个关键步骤:从多个传感器中收集数据,预处理数据以减少降噪和同意,以确定机器健康的最相关指标,最后,构建预测模型以预测未来的失败或估算机器机械的有用寿命(RUL)。部署后,这些模型将不断监视实时数据,为维护团队提供可操作的见解,例如何时执行维护或更换零件。通过及时进行干预,预测性维护将延长计划外的停机时间,延长设备寿命并降低整体维护成本。此外,它允许更有效地分配维护资源,以确保仅在必要时为MANERY提供服务,而不是根据固定时间表进行服务。这种积极主动的方法显着实现运营效率,使机器学习驱动的预测维护成为旨在提高生产率并保持当今
主要关键词