Loading...
机构名称:
¥ 1.0

摘要 — 第六代 (6G) 无线网络的核心愿景之一是积累人工智能 (AI),以实现万物互联 (IoE) 的自主控制。特别是,必须通过分析人员、数据、流程和事物等 IoE 的上下文指标来维护 IoE 服务交付的质量。然而,当 AI 模型为网络服务提供商带来解释和直觉的缺失时,挑战就随之而来。因此,本文为质量感知的 IoE 服务交付提供了一个可解释的人工智能 (XAI) 框架,该框架同时支持智能和解释。首先,通过考虑网络动态和 IoE 的上下文指标来制定质量感知的 IoE 服务交付问题,其目标是最大化每个 IoE 服务用户的信道质量指数 (CQI)。其次,设计一个回归问题来解决所提出的公式问题,其中通过 Shapley 值解释估计上下文矩阵的可解释系数。第三,通过使用基于集成的回归模型来确保对矩阵之间上下文关系的解释以重新配置网络参数,实现了支持 XAI 的质量感知 IoE 服务交付算法。最后,实验结果表明,AdaBoost 和 Extra Trees 的上行链路改进率分别为 42 .43% 和 16 .32%,而下行链路改进率高达 28 .57% 和 14 .29% 。然而,基于 AdaBoost 的方法无法维持 IoE 服务用户的 CQI。因此,与其他基线相比,所提出的基于 Extra Trees 的回归模型在缓解准确性和可解释性之间的权衡方面表现出显着的性能提升。索引术语 — 万物互联、可解释人工智能、上下文矩阵、Shapley 系数、回归、服务质量。

可解释的人工智能质量框架......

可解释的人工智能质量框架......PDF文件第1页

可解释的人工智能质量框架......PDF文件第2页

可解释的人工智能质量框架......PDF文件第3页

可解释的人工智能质量框架......PDF文件第4页

可解释的人工智能质量框架......PDF文件第5页

相关文件推荐

2020 年
¥10.0