摘要这项研究介绍了Drivaernet,这是3D行业标准汽车形状的大规模高保真CFD数据集,以及RegDGCNN(一种动态的图形卷积神经网络模型),均旨在通过机器学习进行空气动力的汽车设计。drivaernet,其4000个详细的3D汽车网架使用了50万个表面网状面和全面的空气动力性能数据,包括全3D压力,速度场和壁剪应力,解决了广泛的数据集以训练工程应用中深度学习模型的广泛数据的关键需求。它比以前最大的汽车公共数据集大60%,并且是唯一对车轮和车身底部进行建模的开源数据集。regdgcnn利用此大型数据集直接从3D网格中提供高精度的阻力估计,绕过传统限制,例如需要2D图像渲染或签名距离字段(SDF)。通过在几秒钟内实现快速的阻力估计,RegdGCNN便有助于快速的空气动力学评估,从而为在汽车设计中的数据驱动方法整合而实现了巨大的飞跃。一起,Drivaernet和Regdgcnn承诺将加速汽车设计过程,并有助于开发更有效的车辆。为了为未来的创新奠定基础,我们的研究中使用的数据集和代码可在https://github.com/mohamedelrefaie/drivaernet 1中公开访问。
计算流体动力(CFD)和机器学习方法用于研究NASA型NACA 0012的热传递。已经开发了几种不同的模型,以检查层流,晶状体流量和Allmaras流对NACA 0012机翼在不同的空气动力学条件下的影响。在本文中,针对多孔模式和非孔模式的不同机翼模式讨论了高温下的温度条件。特定参数包括11.36 x 10-10 m 2的渗透率,孔隙率为0.64,惯性系数为0.37,温度范围为200 k和400K。该研究表明,温度升高可以显着增加提升到拖拉。另外,采用多孔状态和温度差异进一步有助于增强电力到拖拉系数。在调整温度时,神经网络还可以成功预测结果,尤其是在有更多情况的情况下。尽管如此,本研究使用Smoter模型评估了系统的准确性。已显示测试情况最佳性能验证的MSE,MAE和R分别为0.000314、0.0008和0.998960,在k = 3。然而,研究表明,时期值大于2000,增加了计算时间和成本而不提高准确性。这表明SMOTER模型可用于准确对测试案例进行分类;但是,对于最佳性能,不需要更高的时期值。
量子线性求解器是求解方程线性系统的最早且众所周知的量子算法之一是Harrow,Hassidim和Lloyd [8]。这实现了复杂性的指数改善(即运行时)。随后在Childs等人的量子算法中获得了相对于精度的提高复杂性。[9]。这是通过基于量子奇异值转换(QSVT)代替[8]的量子相估计来实现的。Childs等人的算法。可以看作是Gilyen等人的更通用QSVT算法的特殊情况。[10]。应注意的是,由于州准备或状态读数要求,任何潜在的指数改进都处于风险的危险中[11]。这需要以某种形式解决,而无需使用“被动QRAM”,而没有已知的可扩展物理实现[12]。
可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并探究腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了受模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可最大限度地减少跟踪误差和传输成本。此外,我们通过将碳纤维棒固定在胸腹关节上,测试了限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术以改善 VAWT 空气动力学并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术,以改善 VAWT 空气动力学性能并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
实验程序和注意事项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................21 不确定性....................................................................................................................................................................................................22
本论文由 ODU Digital Commons 的机械与航空航天工程部门免费提供给您,供您开放访问。它已被 ODU Digital Commons 的授权管理员接受并纳入机械与航空航天工程论文和学位论文。有关更多信息,请联系 digitalcommons@odu.edu。