下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是考虑这三个要素之间的平衡,最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和赛道上实际行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用CFD再现轮胎因侧向力而变形时的气流,而这在风洞中用实车是无法再现的,因此对在赛道上行驶的车辆周围的气流有了新的认识。其中一部分认识已在风洞试验中得到验证。
本研究是在我担任达姆施塔特工业大学流体力学和空气动力学研究所博士研究员期间准备的。首先,我要感谢我的博士导师 Prof. Dr.-Ing。C. Tro-pea。他提供了在令人着迷的飞行实验环境中工作的机会。Tropea 教授提供的独特基础设施和科学环境,以及他多年来为我提供的支持,极大地帮助了我进一步发展。我还要感谢 Prof. Dr.-Ing。R. Radespiel 对我工作的持续关注以及对这篇论文的审阅。非常感谢德国研究基金会 (Deutsche Forschungsgemeinschaft) 按照合同 TR 194/48-1 提供的资金支持。我要感谢我的同事 Andreas Reeh、Alexander Duchmann、Andreas G¨uttler 和 Martin Stenger,感谢他们非凡的奉献精神,帮助我制造了翼手套和测量系统,并持续提供支持。我非常感谢学生 Vasco Arnold、Katrin Barckmann、Otto B¨opple、Christoph Dienel、Wilm Friedrichs、Felix Loosmann、Simon Miller 和 Jonas Schulze,他们为我研究的每个部分做出了根本性的贡献。他们无一例外地全身心地投入到他们的任务中,我相信他们至少有一点享受其中。如果没有合作和乐于助人的机械车间,任何实验研究都不可能成功进行。因此,我要感谢 Ilona Kaufhold 和她的机械师团队,他们总是以自发和友好的方式提供帮助。我非常感谢 Tim Geelhaar 对制造翼手套模具的支持。最后,但并非最不重要的是,我要向我的家人表达感激之情,感谢他们多年来的持续支持。如果没有他们对我的教育以及飞行活动的赞赏和支持,这项工作就不可能实现。
1911 年至 1919 年期间,海军在海军航空领域做出了开创性贡献。1911 年,海军采购了第一架飞机 Curtiss A-1,开始对航空产生浓厚兴趣。这架飞机在技术上与莱特兄弟的第一架飞机相似,但动力更强,可以利用其大型中央浮筒从水中起飞。当时,美国没有大学提供航空工程学位,甚至没有航空工程课程,也没有任何政府航空实验室。航空工程实践在很大程度上是一个反复试验的过程。虽然这种方法对于 A-1 等小型飞机很成功,但它对开发更大、性能更强大的飞机构成了重大障碍。在海军少将 David W. Taylor 的领导下,海军的“实验风洞”在华盛顿海军船厂的海军实验模型盆地旁边设计和建造,以推动航空工程的发展。海军的新风洞是世界上最大的风洞,也是海军空气动力学实验室的核心。该实验室和在泰勒领导下在那里工作的海军建造者开发并改进了测试完整飞机和飞机部件比例模型的方法。这些实验提供了有效设计大型飞机所需的数据,并促成了海军 NC 飞艇的成功。1919 年,NC 成为第一架飞越亚特兰大的飞机
人们越来越担心公路车辆对环境的影响,这将导致所有乘用车的空气阻力降低。这包括运动型多用途车 (SUV) 和轻型卡车,它们的阻力系数相对较高,迎风面积较大。风洞仍然是车辆空气动力学专家的首选工具,但重要的是,风洞中获得的好处应反映出车辆在道路上的改进。使用各种配置的路虎 Freelander 进行滑行测量以确定空气阻力,并将这些测量与同一车辆的风洞数据进行比较。评估了滑行数据的可重复性、接近零偏航的阻力变化的影响以及阻力偏航数据的不对称性对滑行测试结果的影响。研究了风洞测量的替代阻塞校正。针对测试的配置建立了风洞和道路上空气阻力数据之间的合理相关性。
下压力可用于增加车辆转弯时轮胎的侧向力极限和车辆减速时的制动力极限。空气阻力是决定车辆加速性能的重要因素。前后下压力平衡也有助于车辆稳定性。空气动力学开发的目的是在考虑这三个要素之间的权衡的情况下最大化下压力或升阻比。在开发过程中,使用 50% 比例模型在风洞试验中优化车辆形状,然后使用全尺寸风洞试验验证效果。使用 CFD 和粒子图像测速 (PIV) 同时分析气动现象有助于使模型比例风洞的开发以有效的方式向前推进。在一定程度上,使用 CFD 定量评估气动载荷也成为可能,使其成为能够支持部分优化过程的工具。作为风洞试验和实际在赛道上行驶的车辆之间的桥梁,CFD 的重要性也在日益增加。例如,使用 CFD 再现轮胎因侧向力而变形时的气流,而这在风洞中无法用实际车辆再现,这为在赛道上行驶的车辆周围的气流带来了新的发现。其中一些发现已在风洞试验中得到验证。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
新项目初步设计的工程工作在很大程度上基于基本的基础实验测试、经验程序和低级(快速、廉价且易于处理)计算机代码,这些代码仅限于势流,并对粘性效应进行简单的校正。需要培训加入工业界的年轻工程师使用这些简单的工程工具。如果不能熟练使用这些工具,新飞机成本效益高的初步设计艺术将受到危害。
新项目初步设计的工程工作在很大程度上基于基本的基础实验测试、经验程序和低级(快速、廉价且易于处理)计算机代码,这些代码仅限于势流,并对粘性效应进行简单的校正。需要培训加入工业界的年轻工程师使用这些简单的工程工具。如果不能熟练使用这些工具,新飞机成本效益高的初步设计艺术将受到危害。