摘要。20 多年前,随着 Terra 和 Aqua 卫星的发射,气溶胶遥感经历了一场革命。随着携带新型被动和主动传感器的其他发射,遥感技术继续取得进步。卫星视图能够检索表征气溶胶负荷、基本粒子特性以及某些情况下的气溶胶层高度的参数,从而聚焦地球气溶胶系统。建模界也取得了类似的进展。现在,这些努力已经持续了很长时间,我们可以看到遥感和建模界的发展趋势,这让我们可以推测未来以及 20 年后该界将如何处理气溶胶遥感。我们预计,高光谱和/或偏振测量技术将取代当今的标准多波长辐射计,所有这些都可以从多个角度进行观察。这些技术将由先进的主动传感器支持,这些传感器除了后向散射外,还能够测量气溶胶消光曲线。结果将更深入地了解气溶胶粒子特性。算法将从主要基于物理转变为包含越来越多程度的机器学习方法,但基于物理的技术不会灭绝。不过,将算法应用于单个传感器的做法将会减少。检索算法将包含统一框架中的多个传感器和所有可用的地面测量数据,这些反转产品将直接输入同化系统,成为“半机械人”:一半是观测,一半是模型。20 年后,我们将看到太空真正的民主化,大大小小的国家、私人组织和各种规模的商业实体都将发射太空传感器。随着可用数据和气溶胶产品数量的增加,将会出现大量的坏数据。用户社区将组织起来制定标准,大型国家航天局将通过部署和维护验证地面网络和重点现场实验来带头努力保持质量。在整个过程中,人们对全球气溶胶系统的兴趣仍将很高,该系统如何影响气候、云、降水和动态、空气质量、环境和公共健康、病原体的运输和生态系统的施肥,以及这些过程如何适应不断变化的气候。
获得有关气溶胶递送设备的尽可能多的信息至关重要。您通过获得第四版的“气溶胶药物指南”迈出了积极的第一步。美国呼吸护理协会(AARC)要求呼吸治疗师被注意到气溶胶递送专家撰写本指南。本指南是与您一起编写的。您知道,提供它们的药物数量和提供的设备的数量经常更改。 这就是为什么对您了解这些设备之间的关键差异以及更重要的是如何正确使用设备,以便您可以最大程度地提高药物提供的预期结果。 我们鼓励您精通气溶胶递送设备,并不要犹豫,问医生或呼吸治疗师的问题。您知道,提供它们的药物数量和提供的设备的数量经常更改。这就是为什么对您了解这些设备之间的关键差异以及更重要的是如何正确使用设备,以便您可以最大程度地提高药物提供的预期结果。我们鼓励您精通气溶胶递送设备,并不要犹豫,问医生或呼吸治疗师的问题。
• 气雾剂产品受到严格监管,以确保安全制造、运输、储存、使用和处置 • 气雾剂容器可回收,并被广泛回收 • 不再可销售的气雾剂产品可以安全运输以进行材料回收和容器回收 • 促进制造商和零售商的回收和再利用对所有人都是双赢的
摘要:除具有气溶胶特性外,生物学起源的气溶胶(被称为生物紫色)具有生命系统的气溶胶,可为它们提供一些具有促成功能的活性。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。 在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。 特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。 未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。
摘要:利用过去来改善未来的预测,需要对气候和温室气体(GHG)(GHGS)对观察到的气候变化的个人气候贡献进行理解和定量,这受到气候溶液强迫和反应的大量不确定性的阻碍。为了估算历史气溶胶响应,我们通过结合观察到的热带潮湿和干燥区域观察到的变化的信号,半明确温度不对称的温度不对称,全球平均温度(GMT)以及全球平均降水(GMLP)(GMLP)的信号来归因于温度和降水的关节变化。指纹代表气候反应对气溶胶(AERS)和其余的外部强迫(NOAER;主要是GHG)源自来自历史单和所有模型的大型组合,该模型来自耦合模型对间隔项目的第6阶段的三个模型,并使用完美的模型研究选择。是由不完善的模型研究和水文灵敏度分析支持的,该分析支持了我们选择温度和降水细纹的选择。我们发现,包括温度和降水在内的诊断效果稍微更好地限制了纯粹基于温度或仅基于GMT的诊断,并允许AER冷却的归因(即使在纤维上不包含GMT时)。这些结果在来自不同气候模型的纤维上具有鲁棒性。AER和NOAER的估计贡献与其他已发表的估计值一致,包括最新IPCC报告的估计。最后,我们将气溶胶诱导的冷却的0.46 K([2 0.86,2 0.05] k)的最佳估计归因于2010年Noaer升温的1.63 K([1.26,2.00] k),相对于1850年至1900年,使用GMT和GMLP的综合信号。
1 Strasbourg大学,CNRS,实验室图像Ville et Environnement(Live),UMR7362,Strasbourg,法国2号法国环境和能源管理机构,法国3章鱼3号章鱼实验室,法国La Madeleine,法国4实验室4个气候和环境科学实验室
1 伯明翰大学地理、地球与环境科学学院,伯明翰 Edgbaston Rd,伯明翰,B15 2TT,英国 2 芬兰气象研究所,00101 赫尔辛基,芬兰 3 赫尔辛基大学大气与地球系统研究所,00014 赫尔辛基,芬兰 4 英国南极调查局,NERC,High Cross,Madingley Rd,剑桥,CB3 0ET,英国 5 极地科学研究所 (IPS),国家研究委员会 (CNR),意大利威尼斯 6 韩国极地研究所,26, SongdoMirae-ro,延寿区,仁川,406-840,韩国 7 阿尔弗雷德·韦格纳研究所 (AWI),亥姆霍兹极地与海洋研究中心,不来梅港,德国 8 国家气象局 (SMN),Av. Dorrego 4019,布宜诺斯艾利斯,阿根廷 9 国家科学技术研究委员会 (CONICET),布宜诺斯艾利斯,阿根廷 10 中船重工海洋科学研究所,CSIC,08003,巴塞罗那,西班牙 11 阿卜杜勒阿齐兹国王大学环境科学系,气象、环境和干旱土地农业学院,吉达 21589,沙特阿拉伯半岛
金属有机骨架 (MOF) 是具有独特吸附性能的微孔结晶配位聚合物。它们在催化、1 气体存储、2 分离 3 和微电子领域显示出了巨大的潜力。4 作为传感器涂层,它们可以将分析物富集在传感器表面,在某些情况下是选择性的。5,6 然而,由于缺乏简便和通用的沉积和图案化技术,它们的集成受到阻碍。7,8 基于溶液的 MOF 沉积技术,例如化学溶液生长或液相外延,可能会导致腐蚀或污染。4 化学气相沉积可以避免这些风险,9 但受到金属前体的反应性和连接剂的挥发性的限制。已经展示了多种用于 MOF 涂层的图案化方法。减法方法(例如剥离图案化 9,10 或无抗蚀剂直接光刻 11)涉及修改整个基板,这增加了残留物污染的风险。相比之下,加法图案化技术(例如选择性生长 12、微接触 12,13 和喷墨打印 14,15)仅将目标材料沉积在基板的有限区域上。喷墨打印特别
1 沙特阿拉伯图沃阿卜杜拉国王科技大学 2 美国科罗拉多州博尔德市科罗拉多大学 CIRES 3 美国科罗拉多州博尔德市 NOAA 地球系统研究实验室