遗传转化是一个复杂且资源密集型的过程,它是产生GMO(转基因生物)或基因编辑作物的关键瓶颈。1许多研究人员探索了激素和植物发育调节基因来增强植物再生,从而提高了组织培养依赖性遗传转化的效率。2先前,我们开发了无组织培养的“切割浸入”(CDB)方法来进行遗传转化,利用农杆菌根源基因根源诱导和转化来自外植体切割部位的毛根。3遗传转化的植物是从具有芽形成能力的转化的毛根中生长的。CDB方法极大地简化了遗传转化和基因编辑(包括Taraxacum Kok-Saghyz Rodin(TKS))的实验工作流程。在这里,我们通过省略了毛茸茸的根形成过程,在CDB方法中开发了一个极为简化的过程,从而大大节省了人工和时间。
摘要 加州罂粟 (Eschscholzia californica) 是毛茛目的一员,是所有其他真双子叶植物的姊妹目,因此在系统发育上具有很高的信息量。毛茛目以其多样的花形态和许多药学相关生物碱的生物合成而闻名。加州罂粟被广泛用作研究花发育控制基因保存的模型系统。然而,在毛茛目中,稳定的遗传操作选择很少,因此很难建立遗传模型系统。在这里,我们介绍了一种通过农杆菌介导的转化、体细胞胚诱导和再生加州罂粟进行高效、稳定的遗传转化的方法。此外,我们还提供了一种快速分离和转化原生质体的方法。这使得可以在单细胞和全植物环境中研究基因功能,从而能够通过基因组编辑技术进行基因功能分析和生物碱生物合成途径的修改,为遗传模型生物E. californica提供重要资源。
电穿孔已成为一种高效的方法,可以快速,熟练地将外源质粒DNA引入各种细胞类型,尤其是那些缺乏自然能力的细胞类型。本协议文章描述了一种使用电穿孔转化农杆菌Rhizogenes K599的方法。这种方法虽然需要纯化的质粒DNA,有能力的细菌以及标准的电穿孔设备,例如基因脉冲控制器和比色杯,但就转化效率和速度而言具有显着优势。本文详细介绍的协议不仅概述了程序步骤,还强调了在A. rhizogenes K599研究的背景下有效转化的重要性。此外,它提供了有关所达到的转化率的见解,从而为研究人员提供了评估该方法疗效的基准。通过阐明设备要求和程序上的细微差别,该协议旨在使研究人员能够采用电穿孔作为A. rhizogenes k599遗传操作的可靠工具,从而促进各种生物技术应用中的进步。
摘要:尽管进行了大量的优化工作,但开发一种有效的序列特异性 CRISPR/Cas 介导的基因组编辑方法仍然是一项挑战,尤其是在小麦等多倍体谷类物种中。因此,在植物体内使用核酸酶构建体之前验证其有效性是每个编辑实验的重要步骤。提出了几种构建体评估策略,其中 PEG 介导的幼苗衍生原生质体的质粒转染最受欢迎。然而,这种方法的实用性受到相关构建体拷贝数偏差和染色质松弛的影响,这两者都会影响结果。因此,为了对 CRISPR/Cas9 构建体进行可靠的评估,我们提出了一种基于农杆菌介导的已建立小麦细胞悬浮培养物转化的系统。该系统用于评估旨在靶向 ABA 8'-羟化酶 1 基因的 CRISPR/Cas9 构建体。通过经济高效的桑格测序和生物信息学分析方法验证了编辑的效率。我们讨论了该方法与其他体外方法相比的优势和未来的潜在发展。
摘要 由水稻白叶枯病 (BLB) 引起的水稻细菌性叶枯病 (Xoo) 是水稻生产的一个主要制约因素。一些野生型水稻品种对 BLB 的天然抗性是由于 SWEET 基因启动子区中的效应结合元件 (EBE) 发生突变。SWEET14 是大多数 Xoo 病原体 TALE 最常针对的基因之一。因此,本研究旨在通过 CRISPR/Cas9 介导的基因组编辑技术在籼稻品种 CO51 中的 OsSWEET14 基因的 EBE 中创建新的突变,以赋予其对 BLB 的抗性。使用未成熟胚进行农杆菌介导的转化,然后进行再生,从六个独立转化事件中获得了 11 株转基因植物,其中九株植物(属于五个事件)的靶序列发生突变。对四种突变植物(属于三个事件)进行的生物测定研究结果显示,两种植物(属于两个事件)对 BLB 具有抗性/中度抗性。
为了提高农作物的产量、抗旱性、抗虫性和营养价值等,现代农业依赖于植物基因工程。自从重组 DNA 技术问世以来,人们已经利用多种工具对植物进行基因转化,例如农杆菌、病毒介导的基因转移、直接基因转移系统(例如电穿孔、粒子枪、显微注射和化学方法)。所有这些传统方法都缺乏特异性,转基因被整合到植物 DNA 的随机位点。最近,出现了新的基因靶向技术,例如工程核酸酶(例如锌指核酸酶)、转录激活因子样效应核酸酶、成簇的规则间隔短回文重复序列。其他进展包括用于递送基因编辑组件的工具的改进,这些组件包括载体蛋白和碳纳米管。本综述重点介绍植物中靶向特异性基因递送的最新技术、它们的表达以及植物生物技术的未来方向。
图 1 Zymospetoria tritici 的各种效应物持续抑制 flg22 诱导的活性氧 (ROS) 爆发。候选效应物在本氏烟中用农杆菌瞬时表达。每片叶子的一半表达阴性对照 (sHF),另一半表达效应物。渗入后 72 小时,用 flg22 处理叶子每一侧的叶盘。通过将表达效应物的叶盘的总发光度与阴性对照 (sHF) 进行比较,测量每次 ROS 爆发测定中所有叶盘的平均总相对发光 (RLU)。单独的实验进行了五次,每个图中有五个数据点表示。对于 Zt_2_242,有一个不符合要求的数据点。为了确认这是一个异常值,又进行了三次重复(即总共八个数据点)。与 sHF 对照相比,五种效应物被鉴定为 flg22 诱导的 ROS 爆发的显著抑制剂(Wilcoxon 检验:* p < 0.05,** p < 0.01)。
基因组编辑是生物科学领域的一项新技术,它使研究人员能够精确编辑任何生物体中自然存在的基因等位基因。在植物科学领域,它有潜力培育出资源利用效率更高、抗逆性更强、质量和产量更高的新型设计作物。要充分利用这种新育种工具的优势,培训该特定研究领域的人力资源至关重要。考虑到这一点,本培训课程专为学生设计,将介绍植物基因组编辑的基础知识,概述 CRISPR 生物学的一般原理以及使用 CRISPR-Cas9 作为植物基因组编辑工具。学员将在指导 RNA 设计、载体选择、载体构建、农杆菌介导的植物转化、突变体鉴定和突变株系的分子表征等方面获得实践经验。该领域的杰出研究人员将分享这项即将推出的技术的成功案例和未来前景。学员将了解与基因组编辑技术相关的伦理问题以及实践该技术的现行立法指南。
收到日期:2021 年 11 月 8 日 番茄 ( Solanum lycopersicum ) 是一种营养丰富的食物,含有各种次生化合物,对健康有很大益处。番茄果实的糖含量部分是通过调节和分解果实和发育过程中的蔗糖来控制的。细胞壁转化酶 (CWI) 将蔗糖水解成单糖并将其运输到细胞质中,这意味着番茄的糖含量受 CWI 调控。同时,由于这种基因抑制是由 CIF1 基因的产物诱导的,因此 CIF1 基因的失活可能会增强番茄中的糖合成。目前,CRISPR/Cas9 系统是一种最先进的技术,在基因编辑方面具有广泛的应用和高精度。在本研究中,设计了适合 CIF1 基因的 gRNA 来构建表达构建体。将 pRGEB31-CIF1G2 质粒中的该表达系统引入到 DH10B 大肠杆菌菌株中。随后,携带该表达系统的载体成功转移到EHA105农杆菌菌株中。进一步地,含有载体pRGEB31-CIF1G2的农杆菌株系可用于在基因编辑的Tiny-Tim番茄株系中产生所需性状。
摘要 大麻 ( Cannabis sativa L.) 是一年生植物,通常为雌雄异株。由于其对人类疾病的治疗潜力,植物大麻素作为一种医疗疗法最近受到了越来越多的关注。已经使用组学分析阐明了几种参与大麻素生物合成的候选基因。然而,由于很少有关于大麻组织稳定转化的报道,因此基因功能尚未得到充分验证。在本研究中,我们首次报告了使用农杆菌介导的转化方法在 C . sativa 中成功生成基因编辑植物。 DMG278 实现了最高的芽诱导率,被选为转化的模型菌株。通过在未成熟谷物的胚下胚轴中过度表达大麻发育调节嵌合体,芽再生效率显着提高。我们使用 CRISPR/Cas9 技术编辑了八氢番茄红素去饱和酶基因,最终生成了四株具有白化表型的编辑大麻幼苗。此外,我们繁殖了转基因植物并验证了T-DNA在大麻基因组中的稳定整合。
