用于解决复杂物理问题的机器学习(ML)技术的整合越来越被认为是加快模拟的有前途的途径。但是,评估ML衍生的物理模型在工业环境中的采用构成了重大挑战。本竞赛旨在促进创新的ML方法来应对身体挑战,利用我们最近引入的统一评估框架,称为学习工业物理模拟(LIPS)。建立在2023年11月至2024年3月1日举行的初步版本上,该迭代以良好的物理应用为基础的任务为基础:使用我们建议的Airfrans数据集,翼型设计模拟。竞争基于各种标准评估解决方案,包括ML准确性,计算效率,分布外部性能和遵守物理原理。值得注意的是,这项竞争代表了探索ML驱动的替代方法的开创性努力,旨在优化物理模拟中计算效率和辅助性之间的权衡。托管在Codabench平台上,比赛为所有参与解决方案提供了在线培训和评估。
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
摘要。本研究研究了各种机器学习(ML)算法在预测两个关键空气动力系数的应用,即最大升力系数(𝐶𝐶)和最小阻力系数(𝐶𝑑),对于任何给定的雷诺数,风力涡轮机翼型。我们建议使用聚类技术对类似的机翼形状进行分组,并使用创建的分区来预测使用它们相似性的看不见的机翼属性。在这里,我们还代表了Parsec低维空间中的机翼,而不是高维翼型点空间,以弥补少量训练数据。为此,创建了一个扩展的实验机翼数据库,并用于基于五种不同ML算法的培训模型。我们观察到决策树集合(DTE),随机森林(RF)和多层感知器(MLP)模型成为𝐶𝐶𝑙和𝐶𝑑𝑑𝑚𝑖𝑛𝑑𝑑𝑑𝑑𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥𝑚𝑖𝑛𝑙的最有效预测指标。在培训数据库中未包含的三个其他机翼案例上测试这两个ML模型表明,𝐶𝐶𝑙𝑙𝑙𝑙𝑙预测性能通常是合理的,错误级别的平均值约为5%。相比之下,𝐶𝑑的预测误差水平通常更高,平均约为15%。
计算流体动力(CFD)和机器学习方法用于研究NASA型NACA 0012的热传递。已经开发了几种不同的模型,以检查层流,晶状体流量和Allmaras流对NACA 0012机翼在不同的空气动力学条件下的影响。在本文中,针对多孔模式和非孔模式的不同机翼模式讨论了高温下的温度条件。特定参数包括11.36 x 10-10 m 2的渗透率,孔隙率为0.64,惯性系数为0.37,温度范围为200 k和400K。该研究表明,温度升高可以显着增加提升到拖拉。另外,采用多孔状态和温度差异进一步有助于增强电力到拖拉系数。在调整温度时,神经网络还可以成功预测结果,尤其是在有更多情况的情况下。尽管如此,本研究使用Smoter模型评估了系统的准确性。已显示测试情况最佳性能验证的MSE,MAE和R分别为0.000314、0.0008和0.998960,在k = 3。然而,研究表明,时期值大于2000,增加了计算时间和成本而不提高准确性。这表明SMOTER模型可用于准确对测试案例进行分类;但是,对于最佳性能,不需要更高的时期值。
设计只能与其数学表示一样好。在工程设计优化中,所选的参数化方法可以对结果产生重大影响。本文介绍了一种利用变异自动编码器(VAE)的翼型设计参数化的新方法,这是一类以降低维数的熟练程度而闻名的神经网络。但是,VAE的重大挑战是编码潜在空间的解释性。这项工作旨在通过创建具有可解释潜在空间的网络来解决此问题,从而产生人类可以理解的参数。使用综合的UIUC机翼数据库评估了这种方法的有效性,该数据库提供了多种式机翼形状供分析。我们表明,VAE可以成功提取翼型几何形状的关键特征,并使用六个参数对其进行参数化,这些特征以设计器可以理解的方式显示与机翼属性的明显相关性。此外,它可以平滑地插入数据点,从而产生新的机翼,从而提供实用且可解释的机翼参数化。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术以改善 VAWT 空气动力学并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术,以改善 VAWT 空气动力学性能并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
翼型内部 Ra Ra 冷却设计 喷漆后状态(微米) (微米) 基线叶片 翼展方向 5.0 + 0.6 1.4 + 0.3 弦向 5.7 + 1.7 1.5 + 0.4 基线叶片 翼展方向 3.6 + 0.8 0.8 + 0.15 弦向 3.8 + 0.6 1.0 + 0.2 NETL 双壁 翼展方向 1.1 + 0.2 1.0 + 0.3 弦向 1.1 + 0.15 0.7 + 0.3 平均值 + 2 个标准差
进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。