摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
我们引入了一种新算法,称为 PPA(性能预测算法),该算法可以定量测量神经系统元素对其执行任务的贡献。根据一小组病变中性能下降的数据,该算法可以识别参与认知或行为任务的神经元或区域。它还可以准确预测由于多元素病变导致的性能。新算法的有效性在两个具有元素间复杂相互作用的循环神经网络模型中得到了证明。该算法可扩展并适用于大型神经网络的分析。鉴于可逆失活技术的最新进展,它有可能对理解生物神经系统的组织做出重大贡献,并阐明关于大脑局部计算与分布式计算的长期争论。
Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
湿度是空气中的水蒸气量。如果空气中有很多水蒸气,则湿度将很高。湿度越高,外面感觉越湿。相对湿度是实际上空气中的水蒸气的量,其表示为空气可以在相同温度下容纳的最大水蒸气量的百分比。在寒冷的-10摄氏度(华氏14度)上考虑空气。在该温度下,空气最多可以容纳每立方米的2.2克水。因此,如果摄入-10摄氏度时,每立方米有2.2克水,我们的相对湿度很不舒服。如果在-10摄氏度的空气中有1.1克水,我们的相对湿度为50%。
您正在这样做一些示例,请尝试了解什么是“简单但缓慢”的算法,并且速度有多慢?2。证明算法的正确性:在证明算法的正确性之前,您应该确保了解该算法在做什么。为此,选择一个小的特定示例输入(或其中一些),然后手工通过算法运行。在进行此操作时,请考虑为什么要为您的证明而努力直觉。3。分析算法的时间复杂性:与证明正确性一样,您应该首先确保您了解算法在做什么,因此请通过在少量输入上运行的示例来工作!4。证明索赔/定理/引理:在证明某事之前,您应该了解您要证明的是什么。通常您要证明的东西将具有“假设X。然后y。”选择一个X持有的小例子,并试图说服Y在这种情况下也保持。
因此,这些仍然是暴风雨的时期,这与新系统技术的出现相处。一年前,观察到荷兰必须采取措施才能掌握算法。同时,AI技术的动荡增长仍在继续。此外,生成AI的出现为通过新的AI应用程序进行了大规模实验提供了激励措施。在未来几年中,AI将与社会要素越来越深深地交织在一起。这是在规模和自然方面的结果,在更多和更新的风险中仍然难以评估。其长期影响也尚未完全理解。总的来说,到目前为止,国际政策响应已经决定性。它既关注传统的监督,又关注新的测试和控制形式,例如AI系统的安全性以及打击新的网络安全风险。同时
摘要 集群计算在数据分析、科学模拟和人工智能等各个领域发挥着关键作用。通过利用多台互连计算机的功能,集群能够高效地处理大规模计算任务。然而,传统的集群计算方法具有固有的局限性,可能会阻碍其性能和可扩展性。近年来,量子计算已成为一种有前途的范式,有可能彻底改变计算能力。量子计算机利用量子力学原理比传统计算机更快地执行复杂计算。专为量子计算机设计的量子算法在解决传统系统计算挑战性问题方面表现出了卓越的能力。本研究重点关注量子算法在提高集群效率方面的应用。通过利用量子计算的独特属性(例如叠加和纠缠),量子算法提供了提高集群计算系统性能和可扩展性的可能性。本研究的目的是深入探讨在集群计算环境中使用量子算法的潜在优势、挑战和未来前景。通过研究现有的为提高集群效率而设计的量子算法并分析现实世界的案例研究,我们旨在深入了解这一新兴领域的实际意义。通过这一探索,我们力求阐明将量子算法集成到集群计算中的机会和局限性,并确定进一步研究和开发的潜在途径。通过利用
巴黎萨克雷大学博士论文,在巴黎萨克雷高等师范学院编写,博士学校 n°579 机械和能源科学、材料和地球科学 (SMEMAG) 博士专业:机械工程论文在卡尚 (Cachan) 提交和答辩, 2019 年 12 月 5 日,作者:Yassir AREZKI 评审团组成:Jean-François Fontaine勃艮第大学教授 报告员 Denis Teissandier 波尔多大学教授 报告员 Jean-Marc Linarès 艾克斯马赛大学教授 考官 Fengzhou Fang 都柏林大学和天津大学教授 考官 Olivier Bruneau 巴黎南大学教授 考官 Nabil Anwer 巴黎大学教授-南方论文主任 Hichem Nouira 研究员(HDR 博士),LNE/Cnam 联合论文主任 Charyar Mehdi-Souzani MCF,巴黎大学 13 论文联合导师 Muriel Thomasset 研究员,同步加速器 SOLEIL 客座
