您正在这样做一些示例,请尝试了解什么是“简单但缓慢”的算法,并且速度有多慢?2。证明算法的正确性:在证明算法的正确性之前,您应该确保了解该算法在做什么。为此,选择一个小的特定示例输入(或其中一些),然后手工通过算法运行。在进行此操作时,请考虑为什么要为您的证明而努力直觉。3。分析算法的时间复杂性:与证明正确性一样,您应该首先确保您了解算法在做什么,因此请通过在少量输入上运行的示例来工作!4。证明索赔/定理/引理:在证明某事之前,您应该了解您要证明的是什么。通常您要证明的东西将具有“假设X。然后y。”选择一个X持有的小例子,并试图说服Y在这种情况下也保持。
-中心 [1662]。-圆形 [1290]。-彩色 [1367]。-组件 [1368]。-连接 [1267]。-共识 [4]。-收缩类型 [1766]。-覆盖范围 [66]。-切割 [541]。-D [91]。-可诊断性 [2057]。-距离遗传 [1350]。-电解质 [1368]。-epf [1290]。-进化 [1389]。-克 [46]。-图表 [897]。-即时 [2117]。-学习 [690]。-有限 [594]。 -均值 [1034, 1741, 1376, 1271, 687, 1301, 1105, 1508, 1715, 890, 2038]。-中位数 [1389]。-Medoids [921]。-mer [1405]。-模型 [1620]。-多重背包 [1944]。-NN [1127, 727]。-非扩张 [1493]。-范数 [1558, 1930]。-操作 [1422]。-OPT [1210]。-顺序 [1162]。-帕累托 [2029]。-分部 [767]。-路径 [1652]。-排列 [1422]。-玩家 [1263]。-适当的 [1576]。 -拼图 [277]。-精炼 [1052]。-细化 [73]。-圆形 [98]。-SAT [1250]。-分离 [1707]。-稳定 [1909]。-子图 [541]。-树 [1848]。-元组 [536]。-宽度 [974]。
人工智能 (AI) 和机器学习 (ML) 在医疗保健领域的融合彻底改变了疾病诊断,为早期发现、提高准确性和个性化治疗提供了潜力。本文评估了各种 ML 算法在诊断多种疾病(包括心血管疾病、癌症、神经系统疾病和传染病)方面的有效性。通过分析关键的监督和非监督学习算法(如支持向量机、随机森林、神经网络和 K 均值聚类),本研究探索了它们在临床环境中的应用、优势和局限性。评估指标包括准确度、精确度、召回率和 AUC,用于评估这些算法的性能。本文还强调了人工智能诊断面临的重大挑战,例如数据质量、模型的可解释性、道德考虑以及与临床工作流程的集成。最后,它探讨了人工智能在疾病诊断中的未来前景,强调了深度学习、个性化医疗和人工智能与人类协作模型的进展。研究结果强调了人工智能在提高诊断效率方面的变革作用,同时也承认需要进一步研究、道德监督和监管框架以确保安全和公平实施。
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
摘要 集群计算在数据分析、科学模拟和人工智能等各个领域发挥着关键作用。通过利用多台互连计算机的功能,集群能够高效地处理大规模计算任务。然而,传统的集群计算方法具有固有的局限性,可能会阻碍其性能和可扩展性。近年来,量子计算已成为一种有前途的范式,有可能彻底改变计算能力。量子计算机利用量子力学原理比传统计算机更快地执行复杂计算。专为量子计算机设计的量子算法在解决传统系统计算挑战性问题方面表现出了卓越的能力。本研究重点关注量子算法在提高集群效率方面的应用。通过利用量子计算的独特属性(例如叠加和纠缠),量子算法提供了提高集群计算系统性能和可扩展性的可能性。本研究的目的是深入探讨在集群计算环境中使用量子算法的潜在优势、挑战和未来前景。通过研究现有的为提高集群效率而设计的量子算法并分析现实世界的案例研究,我们旨在深入了解这一新兴领域的实际意义。通过这一探索,我们力求阐明将量子算法集成到集群计算中的机会和局限性,并确定进一步研究和开发的潜在途径。通过利用
摘要:遗传算法(GA)比其他方法(例如梯度下降或随机搜索)更有用,尤其是对于具有许多局部最小值和Maxima的非不同的函数,例如梯度下降或随机搜索。标准GA方法的缺点之一是需要设置许多超参数,并且基于复杂规则而不是更直观的模糊规则,选择压力是基于复杂的规则。通过模糊逻辑调整此类参数的遗传算法的变体,以使参数更新原理更容易解释,构成模糊遗传算法(FGAS)的类别。本文提出了对具有N个特性和自动生成规则的两个相对模糊遗传算法(FGA)的修改,以及旨在改善模拟运行时的计算优化。在基准功能(Ackley,Griewank,Rastrigin和Schwefel)上评估了修改,并且选择了每个修改方法的最佳设置(即成员资格功能,术语数,T-norm和t-conorm)。将结果与标准GA和粒子群优化(PSO)进行了比较。结果表明,FGA方法可以使用缓存和最近的邻居方法进行优化,而不会失去准确性和收敛性。证明这两种修改后的方法在统计学上的表现明显比基线方法差。结果,我们提出了对现有两种算法的两种优化:通过缓存和测试其性能,通过规则生成和最近的邻居估算进行外推。
Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
摘要。近年来,人工智能 (AI) 算法在预测和健康管理 (PHM) 领域的应用研究,特别是用于预测受状态监测的机械系统的剩余使用寿命 (RUL) 的研究,引起了广泛关注。为 RUL 预测建立置信度非常重要,这样可以帮助运营商和监管机构就维护和资产生命周期规划做出明智的决策。在过去十年中,许多研究人员设计了指标或指标来确定 AI 算法在 RUL 预测中的性能。虽然大多数常用的指标(如平均绝对误差 (MAE)、均方根误差 (RMSE) 等)都是从其他应用程序中改编而来的,但一些定制指标是专门为 PHM 研究而设计和使用的。本研究概述了应用于机械系统 AI 驱动的 PHM 技术的关键绩效指标 (KPI)。它介绍了应用场景的详细信息、在不同场景中使用特定指标的适用性、每个指标的优缺点、在选择一个指标而不是另一个指标时可能需要做出的权衡,以及工程师在应用指标时应该考虑的一些其他因素。