名称:Cormen,Thomas H.,作者。J Leisserson,Charles Eric,作者。 J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Leisserson,Charles Eric,作者。J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Rivest,Ronald L.,作者。J Stein,Clifford,作者。标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。描述:第四版。J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。J计算机算法。classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
机器学习算法的使用经常涉及对学习参数的仔细调整和模型超参数。不幸的是,这种调整是一种“黑色艺术”,需要专家经验,经验法规或有时是蛮力搜索。因此,自动方法可以很好地呼吁,可以优化任何给定的学习算法的性能。在这项工作中,我们通过贝叶斯选择的框架来考虑这个问题,其中学习算法的概括性能是从高斯过程(GP)中建模为样本的。我们表明,对于GP性质的某些选择,例如内核的类型及其超级参数的处理,可以在获得可以实现专家级别的良好优化器方面发挥至关重要的作用。我们描述了新的算法,这些算法考虑了学习算法实验的可变成本(持续时间),并且可以利用多个内核的主体进行并行实验。我们表明,这些提出的算法可以改善以前的自动过程,并且可以针对许多算法(包括潜在的Dirichlet分配,结构化SVM和卷积神经网络)达到或超越人类专家级别的优化。
6 Iterative Algorithms for Linearly Constrained Optimization Problems 127 6.1 The Problem, Solution Concepts, and the Special Environment 128 6.1.1 ~ The problem 128 6.1.2 Approaches and solution concepts 128 6.1.3 The special computational environment 131 6.2 Row-Action Methods , 131 6.3 Bregman's Algorithm for Inequality Constrained Problems 133 6.4 Algorithm for Interval-Constrained Problems 142 6.5标准最小化的行算法147 6.5.1 kaczmarz的算法147 6.5.2 Hildreth的算法148 6.5.3 ART4 -NORM Minimigation
本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
近年来,随着硬件和软件技术的进步,高性能计算取得了长足的发展。计算机的性能按照摩尔定律不断提高,但似乎在不久的将来就会达到极限。量子计算机有可能大大超越经典计算机的性能,因此成为研究的焦点。本研究从理论角度和模拟实现两个方面探讨了经典随机游动与量子游动的区别,并探讨了量子游动在未来的适用性。概述了经典随机游动和量子游动的基本理论,并根据经典随机游动和量子游动的行为和概率分布,比较了它们之间的特征差异。同时,我们使用Qiskit作为量子模拟器实现了量子行走。表示量子行走的量子电路主要由硬币算子、移位算子和量子测量三部分组成。硬币算子表示量子行走中的抛硬币,这里我们使用了Hadamard算子。移位算子表示根据硬币算子的结果进行量子行走的移动。量子测量是提取量子比特的量子态的过程。在一维量子行走中,我们准备了四种情况,作为从两个到五个量子比特位置的量子比特数的差异。在所有情况下,都已看到量子行走的成功实现,这与量子比特的数量和初始状态的差异有关。然后,我们广泛研究了二维量子行走的实现。在二维量子行走中,就每个 x 和 y 坐标位置的量子比特数量而言,准备了三种情况,从两个到四个量子比特。虽然与一维情况相比,问题设置的复杂性大大增加,但可以看出量子行走实现的成功。我们还看到,量子行走的行为和概率分布的扩展在很大程度上取决于初始硬币状态和初始位置的初始条件。本研究证明了量子行走作为解决未来广泛应用中复杂问题的工具的适用性。最后,我们给出了本研究的可能观点和未来展望。
您正在这样做一些示例,请尝试了解什么是“简单但缓慢”的算法,并且速度有多慢?2。证明算法的正确性:在证明算法的正确性之前,您应该确保了解该算法在做什么。为此,选择一个小的特定示例输入(或其中一些),然后手工通过算法运行。在进行此操作时,请考虑为什么要为您的证明而努力直觉。3。分析算法的时间复杂性:与证明正确性一样,您应该首先确保您了解算法在做什么,因此请通过在少量输入上运行的示例来工作!4。证明索赔/定理/引理:在证明某事之前,您应该了解您要证明的是什么。通常您要证明的东西将具有“假设X。然后y。”选择一个X持有的小例子,并试图说服Y在这种情况下也保持。