RealPage还吸引了许多参议员和国会议员的审查。在2022年11月,ProPublica报告后不久,Sens。Amy Klobuchar(D-MN),Dick Durbin(D-IL)和Cory Booker(D-NJ)写信给司法部,担心RealPage使“ Cartel可以人为地膨胀多户住宅建筑中的租金”。 16参议员Sherrod Brown(D-OH)呼吁联邦贸易委员会审查RealPage和Rental定价算法是否违反了法律。17 2023年11月,众议员丹尼尔·高盛(D-NY)敦促纽约总检察长莱蒂蒂亚·詹姆斯(Letitia James)调查该公司。18
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
1。我们希望这些文件会有慷慨的引用,但是我们不需要像您在正式法律写作中看到的那样逐句引文支持。相反,在辩论或与之互动时,或者在依靠它来提出实质性事实时,请参考文献。2。同样,我们有意不要求使用特定的引用格式。对我们来说最重要的是,我们可以看到并理解您用来提出观点的文献,以及(当作品分页时)在工作中我们可以找到特定的实质性支持。3。这些是共识文件。没有提交将完美捕捉团队中任何一个人的观点,也不应该。我们期望一路上有分歧,并做出一些努力来辩论并达成共识。4。如果在关键问题上存在分歧,并且在辩论后您无法达成共识,则可以通过提出相互矛盾的观点及其相对优势/劣势来指出。
较晚的作业期望学生在课堂上列出的到期日期提交作业。较晚的作业,包括但不限于作业,讨论,帖子和答复,测验和考试,可能会在课程结束日期之后接受或可能不接受。在截止日期后提交任务可能会导致每天延迟的10%的罚款,不超过成绩的最高50%。罚款的金额是由教职员工酌情决定的。教师认识到,如果提前传达潜在的延迟,学生的时间有限,也许会更灵活。*
在这个充斥着大量内容的世界里,推荐算法早已成为互联网必不可少的一部分。这种类型的人工智能有助于确定我们在网上看到什么(和看不到什么)。但尽管这可能很有帮助,但这些算法可能会带来意想不到的后果,例如产生过滤泡沫、延续偏见以及破坏我们的创造力、选择和机会。利用这项活动帮助您的学习者批判性地思考人工智能如何以有益和有害的方式塑造他们的在线体验。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
摘要。近年来,人工智能 (AI) 算法在预测和健康管理 (PHM) 领域的应用研究,特别是用于预测受状态监测的机械系统的剩余使用寿命 (RUL) 的研究,引起了广泛关注。为 RUL 预测建立置信度非常重要,这样可以帮助运营商和监管机构就维护和资产生命周期规划做出明智的决策。在过去十年中,许多研究人员设计了指标或指标来确定 AI 算法在 RUL 预测中的性能。虽然大多数常用的指标(如平均绝对误差 (MAE)、均方根误差 (RMSE) 等)都是从其他应用程序中改编而来的,但一些定制指标是专门为 PHM 研究而设计和使用的。本研究概述了应用于机械系统 AI 驱动的 PHM 技术的关键绩效指标 (KPI)。它介绍了应用场景的详细信息、在不同场景中使用特定指标的适用性、每个指标的优缺点、在选择一个指标而不是另一个指标时可能需要做出的权衡,以及工程师在应用指标时应该考虑的一些其他因素。