SMA 通常以两种方式使用:要么利用形状记忆效应,要么利用热或应力诱导的马氏体相变提供的超弹性行为。在 TiNi 基 SMA 中,可实现高达 8% [19] 的可逆固有应变,而利用形状记忆效应则需要加热到高温相奥氏体才能可逆地恢复变形。超弹性合金的可逆伪弹性行为与应力诱导的马氏体相变有关,从奥氏体到马氏体。在这种情况下,只需移除施加的载荷即可实现可逆性。根据应用的要求,SMA 的转变温度可以通过热处理或改变成分来调整。[20–22] Chluba 等人。研究表明,三元形状记忆合金 TiNiCu 即使在 1000 万次超弹性循环后也不会出现疲劳,[23] 这使得这种合金成为皮肤电子(应用于皮肤的可拉伸电子产品)等应用的良好候选材料,其中肘部或膝盖处的设备可能会经受大量循环和大应变。嵌入聚合物中的传统金属(如铜)的循环行为已被研究,结果显示应变高达 5% 时就会出现裂纹。[24] 在人体应用中
2024年第四季度的销售额下降了1.5%,至14.71亿欧元,而2024年第三季度为14.93亿欧元。货物从2024年第三季度的61.7千吨减少到2024年第四季度的5万吨,这是由于可回收和可再生能源细分市场的销量较低,尽管季节性货运较高。调整后的EBITDA在本季度增加到1.16亿欧元(不包括200万欧元的特殊收益),比9,900万欧元(不包括800万欧元的非凡收益)。主要驱动因素是积极的组合,较低的购买价格和积极的估值效应,使较低的数量和较低的价格过度。2024年第四季度的折旧和摊销费用为欧元(54)亿欧元,包括损失欧元(1)百万。Aperam的营业收入在2024欧元中的第四季度的营业收入为6400万欧元,而上一季度的营业收入为4,900万欧元。筹资成本,包括2024年第四季度的FX和衍生品的净成本为欧元(6)百万。本季度的现金成本为1300万欧元。2024年第四季度的所得税费用为欧元(4600万欧元)(包括(16)百万欧元(16000万欧元),延迟税收资产的净纳税资产已被证明是在携带的税收损失和其他税收福利所承认的)。Aperam记录的净结果是2024年第四季度的利润为1200万欧元,而2024年第三季度的利润为1.79亿欧元。
总部位于布鲁塞尔的欧洲铝消费者和用户联合会 (FACE) 决定以新的活力重启欧盟对进口原铝关税的暂停活动,这要归功于罗马路易斯大学 (LUISS University) 的最新研究成果,该研究题为“欧盟铝业 - 欧盟贸易措施对下游活动竞争力的影响”。该研究由 FACE 于 2014 年委托进行,旨在建立欧盟铝价值链的透明情景,特别关注下游环节,该环节约占欧盟铝业年营业额的 70%,占其总就业人数的近 92%。从源头上看,欧盟国内原铝供应不足,70%以上的需求依赖进口,为了弥补2017年约510万吨的缺口,且这一缺口还在不断扩大,下游产业必须从境外供应商那里吸引铝材。与许多其他商品一样,铝产品也适用复杂的进口关税制度;对于未锻造金属,在2007年和2013年连续两次自主暂停征收关税后,铝合金、铝板坯和铝坯以及铸造合金的关税税率分别为3%、4%和6%。未锻造铝进口既有关税款(DP)也有关税款(DU),可以从与欧盟签署优惠贸易协定(PTA)的国家和普惠制(GSP)覆盖的欠发达国家(SPGA)免税进口。由于新的冶炼能力正在受欧盟关税影响的国家建设,应税金属的份额将随着欧盟对进口金属的需求而继续增长。无论如何,由于市场条件,DP价格基准已成为欧盟向下游用户供应原金属的事实基准,所有DU供应商都有强烈的动机收取DP价格,无论他们是否缴纳关税。因此,欧盟下游客户为进口和国内铝支付的价格
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
1)A。Yoshino,K。Sanechika:日本专利,2128922(1984)。2)A。Yoshino,M。Shikata;日本专利,2668678(1986)3)H.4)UACJ Foil Corporation网站。com/en/products/foil.html> 5)X. Zhanga,T。M. devine。 :电化学学会杂志,153(2006)375-383。 6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。com/en/products/foil.html> 5)X. Zhanga,T。M.devine。:电化学学会杂志,153(2006)375-383。6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。
高渗透合金(HEAS)的开发标志着合金设计的范式转移,从传统的方法中转移到了优先考虑较小元素增强的优先基础金属的传统方法。HEAS相反,没有单个主导成分的多个合金元素,从而扩大了合金设计的范围。这种转变导致创建具有高熵(AHES)家族的各种合金,包括高熵钢,超级合金和金属层间,每种都强调了需要考虑其他因素,例如堆叠故障能量(SFE),晶状体失误和抗形边界能量(抗形边界能量(APBE)),这是由于对显微镜的影响而产生的重大影响。在合金中利用多个元素为开发来自多组分废料和电子废物的新合金的有希望的可能性,从而减少了对关键金属的依赖,并强调了对高级数据生成技术的需求。凭借这些多组分原料提供的巨大可能性,建模和基于人工智能的工具对于有效探索和优化新合金至关重要,从而支持冶金中的可持续发展。这些进步要求重新构想合金设计框架,强调强大的数据获取,
各位同仁,挤压加工是目前金属及合金塑性成形的常用方法。近年来,除了改进直接/间接挤压加工方法外,新的技术也不断被提出。金属及合金挤压的成形机理,包括材料最终性能的控制与表征以及挤压加工过程中被激活的成形机理的分析,是本期特刊的研究范围。基础研究与技术创新推动挤压技术的融合,发现现有的不足,尝试突破,不断将新的研究课题和发展路径推向前沿尤为重要。本期特刊欢迎关注新型挤压技术及其对材料最终力学性能和成形性的影响的文章,包括钢材和有色合金(镁/铝/钛合金等)。
增材制造,又称快速成型,已经彻底改变了聚合物材料部件的生产。增材制造技术的新发展为行业提供了使用各种金属合金、陶瓷和复合材料制造结构部件的能力。金属增材制造工艺的引入彻底改变了工业领域金属部件的生产,其中复杂的几何形状、有机形状、管状、空心设计和致密的晶格填充结构起着决定性的作用。然而,存在一些问题限制了金属增材制造的更广泛采用和利用。这些问题与缺乏设计和建模技能和增材制造软件、使用相同技术但不同机器获得的不同特性、难以完美模拟过程、对零件质量变化原因的理解不完全以及过程的可重复性有关。本期特刊旨在收集金属增材制造的材料供应、零件设计、工艺建模、工艺技术、后处理和应用领域的完整论文和评论。
聚焦离子束 (FIB) 装置是一项关键技术,在纳米技术领域已得到广泛应用,可用于局部表面改性、掺杂、原型设计以及离子束分析。这种 FIB 系统的主要组成部分是离子源及其可用的离子种类 1 。目前,大多数仪器都采用 Ga 液态金属离子源 (Ga-LMIS),但对其他离子种类的需求仍在增加 2 。一种非常受关注的元素是硼,它是元素周期表中最轻的元素之一,在微电子学中已得到广泛应用,可通过注入或扩散在硅中进行 p 型掺杂 3 。人们长期以来一直对硼在 LMAIS 中的应用感兴趣,并为此付出了很多努力,通过 FIB 对材料进行局部改性,从而避免 B 宽束注入和光刻步骤。硼有两种稳定同位素,质量为 10 u(19.9% 天然