SMA 通常以两种方式使用:要么利用形状记忆效应,要么利用热或应力诱导的马氏体相变提供的超弹性行为。在 TiNi 基 SMA 中,可实现高达 8% [19] 的可逆固有应变,而利用形状记忆效应则需要加热到高温相奥氏体才能可逆地恢复变形。超弹性合金的可逆伪弹性行为与应力诱导的马氏体相变有关,从奥氏体到马氏体。在这种情况下,只需移除施加的载荷即可实现可逆性。根据应用的要求,SMA 的转变温度可以通过热处理或改变成分来调整。[20–22] Chluba 等人。研究表明,三元形状记忆合金 TiNiCu 即使在 1000 万次超弹性循环后也不会出现疲劳,[23] 这使得这种合金成为皮肤电子(应用于皮肤的可拉伸电子产品)等应用的良好候选材料,其中肘部或膝盖处的设备可能会经受大量循环和大应变。嵌入聚合物中的传统金属(如铜)的循环行为已被研究,结果显示应变高达 5% 时就会出现裂纹。[24] 在人体应用中
摘要:本研究采用激光定向能量沉积在 TiNi 形状记忆合金基体上构建富 Ti 三元 Ti-Ni-Cu 形状记忆合金,实现多功能双金属形状记忆合金结构的连接。采用经济高效的 Ti、Ni 和 Cu 元素粉末混合物作为原材料。采用各种材料表征方法来揭示两部分不同的材料特性。制备的 Ti-Ni-Cu 合金微观结构以 TiNi 相为基体,Ti 2 Ni 二次沉淀物。硬度没有显示出高值,表明主相不是硬质金属间化合物。通过拉伸试验获得了 569.1 MPa 的结合强度,数字图像相关揭示了两个部分不同的拉伸响应。使用差示扫描量热法测量相变温度。测得 Ti-Ni-Cu 合金截面的奥氏体终轧温度高于 80 ◦ C。对于 TiNi 基体,经测试,奥氏体终轧温度在底部接近 47 ◦ C,在上部基体区域约为 22 ◦ C,这是由于重复的激光扫描对基体起到了退火作用。最后,对两个形状记忆合金侧面的多重形状记忆效应进行了测试和识别。
AL4.5WT%CU是一种航空和汽车合金,在产业中广泛用于结构目的。这项工作的目的是评估AL4.5WT%Cu合金,常规和单向的两个不同的固化过程及其重结晶过程。首先,AL4.5WT%Cu合金被冷旋转锻造变形,然后在250至450°C的温度下处理热量。在54%,76%和91%的面积减少后获得了用于分析的样品。进行了光学显微镜,扫描电子显微镜和Vickers显微硬度的测试,以评估重结晶过程。结果表明,重结晶始于350ºC,因为传统样品在5分钟后呈现了完全的重结晶,而单向样品仅呈现部分再结晶。通常,对所有进行的所有分析都呈现出相似的结果。
引言 在商用航空领域,预计 2012 年至 2031 年期间全球市场将需要超过 28,000 架新型大型商用飞机。大约有 10,000 架旧飞机需要更换。据估计,全球空中交通量(以客公里 (RPK) 计算)每年将增长 4.7 %。航空计划 ACARE 2020(欧盟航空研究与创新咨询委员会)和 Flightpath 2050 要求在未来几年内降低飞机的燃料消耗以及二氧化碳和氮氧化物排放量。多方面的空气动力学设计、热负荷和高机械、恶劣的环境和其他工作条件会在机身各个部件中产生异常大的动态应力。这些应力的大小和性质在不同的飞行阶段会进一步变化。这就需要开发能够承受这种变化应力的特殊材料。燃料成本进一步上涨、原材料来源稀缺、效率提升需求、新飞机(军用和民用)需求不断增长,这些因素迫使工程师们制造出更坚固但“尽可能轻便”的飞机框架、发动机和其他部件。为了满足当前和未来的需求,飞机行业必须在创新材料和设计技术以及新制造工艺方面进行大量技术开发。为了满足
图 8 – 样品的扫描电子显微镜图像:a) HSLA 成品;b) 含 0.66 wt.% SiC 的 HSLA;c) 和 d) 无 SiC 和 SiC 的能谱和化学成分
摘要:尽管已经展示了各种微观和中观尺度的金属打印工艺,但打印基于合金与另一种合金/金属之间界面的功能设备(如热电偶、热电堆和热通量传感器)需要打印合金的工艺。此外,这些设备需要高质量的结晶合金才能发挥其可接受的功能。本文首次报道了从单一电解质中共电沉积打印单相固溶体纳米晶铜/镍 (Cu/Ni) 合金,该合金具有各种可控成分(Cu100Ni0 至 Cu19Ni81)。打印的合金是纳米晶体(<35 纳米),连续且致密,没有明显的孔隙度,具有出色的机械和磁性,无需任何后处理退火(如热处理)。此外,还展示了使用此工艺制造的功能热电偶。这种工艺不仅可用于制造功能设备,还可以通过打印用于材料表征的合金成分连续库来促进合金的基础研究。关键词:直写打印、受限电沉积、合金打印、铜/镍合金、共电沉积、机械性能、磁性■ 介绍
20. Santana, A.、Eres-Castellanos, A.、Jimenez, JA 等人。“层厚度和激光发射模式对增材制造马氏体时效钢微观结构的影响”,《材料研究与技术杂志》,第 25 卷,第 6898-6912 页 (2023 年)。DOI:10.1016/j.jmrt.2023.07.114。
近年来,高熵合金 (HEA) 引起了材料界的极大兴趣,主要是因为某些成员表现出了令人着迷的特性,并且它们代表了合金设计的新方法。在这个多组分合金系统系列中,近等原子五组分“Cantor”合金 CrCoMnFeNi 尤其引人注目,因为这种合金表现出了卓越的机械性能,而且只有在温度降低到低温状态时,这种性能才会增强。尽管人们对这种合金系统很感兴趣,但迄今为止很少有人研究过这种合金或其成分变体的循环疲劳载荷行为。在这里,我研究了 Cantor 合金的耐损伤疲劳行为以及温度和载荷比对改变这种行为的影响,以及可能导致观察到的变化的潜在机制。这些测试条件涵盖三个温度范围:293 K、198 K 和 77 K;此外,还调查了在每个温度范围内增加载荷比 R 的影响。在巴黎区阈值和线性部分进行的疲劳测试表明,Cantor 合金的疲劳行为具有温度依赖性;随着温度降低到低温区,疲劳曲线向更高的 ΔK 方向移动,表明在较低温度下对疲劳裂纹扩展的抵抗力更高。此外,观察到更高的负载比对这种抵抗力产生负面影响,导致随着 R 比的增加,ΔK 向更低的方向移动。测试后,进行了一系列机械研究,以调查这种观察到的变化的根本原因。裂纹闭合测量、裂纹路径形态和断口分析提供了强有力的证据,表明粗糙度引起的裂纹闭合是主要作用机制。
作者进行了HEA阵列形成机制。在存在或不存在液体金属纳米反应器的情况下进行了hea颗粒的合成(图1(b),(c))。基于由减少表面能驱动的液体金属的合并性能,构建了动态反应环境,因此将前体转化为合金。相比之下,前体由在每个预定义的孤立区域中产生多个纳米颗粒的纯金属盐组成。为了进一步详细说明液体金属的作用,作者还进行了理论计算,表明GA与底物的键合最弱,并且含GA的系统具有最高的扩散率。这些对实现融合的颗粒运动有益。探索高渗透合金阵列的潜在光学应用,作者在广泛的频谱中展示了全息成像。
摘要该项目的目的是使用形状内存合金设计和创建一个立方体卫星的释放机制。该项目的目的是设计和创建一种轻巧,可靠和简单的释放机制,以部署附着在立方体卫星外部的储藏的太阳阵列。这种机制的设计和创建旨在进一步USM创建和将立方体卫星推向低轨道,以将大学扩展到太空探索中。Cubesat项目是由加利福尼亚理工大学和斯坦福大学的太空系统开发实验室创建的,希望创建一个平台,使太空探索更容易被大学及其学生访问。其他CubeSat组使用了其他各种释放机制设计,其中一些使用形状的存储合金,并取得了不同程度的成功。这个项目是USM首次涉足Cubesat领域,其他相关项目发生在此项目时。该项目的挑战是使用符合NASA的Cubesat维度标准的SMA设计一个简单可靠的线性执行器。最终产品是一种简单,有效且可靠的释放机制,能够重置用于接地测试的。