摘要 Chemello, Claudia, Malcolm Collum, Paul Mardikian, Joe Sembrat 和 Lisa Young。铝:历史、技术和保护。2014 年国际会议论文集。《史密森尼博物馆保护贡献》,第 9 期,第 xii + 220 页,190 幅图,18 张表格,2019 年。— 本卷汇集了 2014 年在史密森尼学会美国艺术博物馆举行的“铝:历史、技术和保护”会议上发表的论文;会议之后,在美国国家航空航天博物馆的 Steven F. Udvar-Hazy 中心举行了实践研讨会,利用博物馆的藏品来说明铝的用途、保护挑战和修复技术,并向与会者介绍 X 射线荧光等分析技术,用于识别铝合金和表面处理。为期三天的国际会议和为期两天的研讨会由史密森学会、美国保护研究所基金会和国际博物馆理事会金属保护委员会工作组联合主办。前所未有的演讲者、组织者和赞助商团队使首次专门讨论铝的保护会议成为可能。来自欧洲、亚洲、澳大利亚和北美的 27 位演讲者发表了演讲,探讨了从雕塑到飞机、从十九世纪珠宝到水下考古物品的铝制物品的退化现象和保护策略的各个方面。会议分为八个类别,代表不同的主题会议:铝的历史和制造、腐蚀和变质、特性和鉴定、考古文物的保护、当代艺术的保护和使用、建筑元素的保护、表面处理和抑制以及预防性保护。
目前,用于航空航天结构的铝 (Al) 整体加固圆柱体 (ISC) 的旋压成型受到可用合金的限制,这些合金能够承受该工艺固有的严重塑性变形。在本次研究中,对三种商用铝合金 (指定为 6061、2139 和 5083) 进行了拉伸测试和成型试验,以确定最能预测旋压和流动成型性的机械性能。Al 6061 在成型试验中表现最佳,因为它符合最终零件的几何形状,这与拉伸测试期间的高总伸长率和面积减少百分比相一致。相比之下,Al 2139 和 Al 5083 在五次旋压成型中的第三次都失败了,可能是因为总伸长率和面积减少百分比值较低。 Al 2139 和 Al 5083 确实表现出比 Al 6061 更高的强度、弹性模量和断裂韧性。这些发现强调了提高 Al 2139 和 Al 5083 的成形性以生产机械性能优于 Al 6061 的完全成形部件的重要性。
对于这个项目,这些挑战本来可以在各种蚀刻化学中遇到。当前用于等离子蚀刻铝的气体为BC13,SICL4,CC14,CL2,BBR3,HBR和BR2 [1,4]。这些气体都是剧毒或致癌的。四胆碱硅不被认为是致癌物,而是毒性。这是选择SICL4作为该项目的蚀刻气体的主要原因之一。SICL4的另一个优点是,它增加了铝对光抗抗命天的选择性。使用SICL4作为唯一的蚀刻气体时,血浆中的过量电弧可能以相对较低的功率发生(<100瓦)发生,因此需要稀释剂来防止这种弧形。这样的稀释剂不仅可以减少等离子体中的弧菌,而且还提高了光膜天固醇的选择性是氦气[2]。使用SICL4和高功率(300瓦)的SICL4和Argon的混合物来完成氧化铝的突破。氩气,是因为其离子很重,因此在溅射过程中对表面造成了更大的损害。SIC14通过减少血浆气氛中的水分来充当水清除剂,从而防止了氧化铝的进一步生长[1]。
我们旅程的下一个突破是在130年前的铝隔离和提取,自公元前5世纪以来就以铝的形式(铝晶体的硫酸盐盐)形式出现了这种元素,主要用于垂死。铝是地壳中仅超过有机硅和氧气的第三大元素,但鉴于它以化学界限的形式发生,因此没有已知的冶炼方法来提取它。直到1886年,查尔斯·霍尔(Charles Hall)和保罗·赫鲁特(Paul Heroult)开发了通过电解隔离纯铝的过程,从而实现了一种具有成本效益的方法来提取这种非有产性金属。第二年,卡尔·约瑟夫·拜耳(Karl Josef Bayer)开发了一种化学过程,可以从铝土矿中提取铝,这是铝矿石的高度自然出现,也是当前铝生产的主要来源。
由于世界正在从化石燃料转向可再生能源,电力变得越来越重要。铝离子电池 (AIB) 是电化学储能领域的有希望的竞争者。虽然锂离子电池 (LIB) 凭借其高能量密度和耐用性长期占据市场主导地位,但可持续性问题源于原材料提取和制造过程对环境的影响,性能相关的缺点包括使用寿命有限、热失控等安全隐患以及回收困难。由于地壳中铝离子 (Al³⁺) 的丰度较高且回收基础设施完善,AIB 以其卓越的可持续性和理论容量脱颖而出,这得益于三价铝离子 (Al³⁺) 的使用。尽管 AIB 在可持续性和理论容量方面具有优势,但其广泛的商业应用受到某些电化学限制的阻碍,例如难以实现具有竞争力的能量密度以及解决与三价铝离子有效循环相关的问题。本文深入探讨了 AIB 的优点,探索了它们超越 LIB 并成为未来领先电池技术的潜力。
适用于海洋环境的铝合金已经问世约 30 年,在减轻结构重量和船体维护方面具有显著优势。然而,铝合金的单位材料成本目前是低碳钢的 5 至 6 倍。与钢相比,使用铝合金通常可减轻船体结构重量约 50%,因此铝船体的总材料成本将是同类钢船体的 2-1/2 至 3 倍。由于铝结构通常不会显著降低船体建造的劳动力成本,因此更高的材料成本会导致总建造成本相应增加,而这些成本必须转嫁给购买者。这一因素通常将铝的使用限制在以下海洋应用领域:
(Benson、Downes 和 Dow 2011;J. Paik 等人 2005;J. Paik 2009;J. Paik 等人 2007;Rigo 等人 2003),拉伸设计方法一直被忽视。无法有效预测拉伸连接的强度和延展性,对使用现代极限状态设计开发轻质铝结构具有严重影响。Smith 方法等渐进式破坏方法需要预测结构元件的载荷-缩短和载荷-延伸曲线,但我们缺乏任何切实可行的方法来预测焊接铝结构的载荷-延伸曲线。直接应用有限元法已被证明是一种困难的方法,需要比板厚度小得多的网格离散化(Wang 等人 2007;Dørum 等人 2010)。此外,如果要在模型中使用壳单元,则需要自定义单元丰富。除了学术研究团体或专业咨询机构外,此类技术尚未实用。迄今为止开发的技术仅在土木工程结构常见的细节类型上得到验证。因此,海洋结构工程师目前缺乏实用工具和实验数据来设计完全考虑焊缝不匹配影响的结构。
适用于海洋环境的铝合金已经问世约 30 年,在减轻结构重量和船体维护方面具有显著优势。然而,铝合金的单位材料成本目前是低碳钢的 5 至 6 倍。与钢相比,使用铝合金通常可减轻船体结构重量约 50%,因此铝船体的总材料成本将是同类钢船体的 2-1/2 至 3 倍。由于铝结构通常不会显著降低船体建造的劳动力成本,因此更高的材料成本会导致整体建造成本相应增加,而这些成本必须转嫁给购买者。这一因素通常将铝的使用限制在以下海洋应用领域: