美国焊接协会(AWS)的所有标准(代码,规格,推荐的做法,方法,分类和指南)都是根据美国国家标准研究所(ANSI)规则制定的自愿共识标准。当AWS美国国家标准被纳入了联邦或州法律法规中包含的文件或制作的一部分时,或其他政府机构的规定,其规定赋予了该法规的全部法律权威。在这种情况下,这些AWS标准的任何更改都必须由具有法定管辖权的政府机构批准,然后才能成为这些法律法规的一部分。在所有情况下,这些标准都具有合同的全部法律权限或其他援引AWS标准的文件。在存在这种合同关系的情况下,必须通过在合同方之间达成协议,与AWS摊位要求的变化或偏离。
摘要:近年来,除了使用激光器的定向能量沉积的基于众所周知的电线过程外,使用电子束的过程变体也已发展为工业市场成熟度。该过程变体为处理高导电性,反射性或容易氧化的材料提供了特别的潜力。但是,对于工业用法,缺乏有关绩效,限制和可能应用的全面数据。本研究使用高强度铝制青铜Cual8ni6的示例弥合了差距。多阶段测试焊缝用于确定该过程的局限性,并得出有关加成制造参数的适用性的结论。为此,研究了能源输入,可能的焊接速度和过程可扩展性的最佳范围。最后,产生了圆柱体和壁的形式的添加剂测试样品,并研究了硬度效果,微观结构和机械性能。发现可以使用电线电子束添加剂制造对材料Cual8ni6进行很好的处理。微观结构类似于铸造结构,标本高度上的硬度为恒定是恒定的,而断裂值的拉伸强度和伸长率达到了原材料的规范。
铝电解电容器(AEC)可用于较高的电容和电压范围,与触觉电解电容器(TEC)相比。然而,在使用温度加速的常规AEC操作或存储过程中电解质的蒸发不允许在空间电子中使用这些零件。相反,对于需要大价值电容器和高工作电压的系统,设计人员必须使用TEC库,这些TEC库实质上增加了电子模块的大小和重量。使用密封的AEC的开发可能对空间系统有益,只要确保必要的可靠性。在AEC存储期间泄漏电流的增加是众所周知的,并且通常通过电解质中氧化铝溶解来解释。但是,尚未讨论这种效果的其他可能机制。尽管密封的TEC已在太空系统中使用了多年,但缺乏有关存储对其特性的影响的信息,这是对铝电容器的比较。这项工作探讨了AC特性(电容,耗散因子和等效串联电阻)和DC特性(泄漏和吸收电流)在长期存储期间在长期存储期间(100°C,125°C,125°C和15000000000000000000000000000000000子)的AC特性(电容,耗散因子和等效串联电阻)和DC特性(泄漏和吸收电流)。表明,两种类型的电容器中的泄漏电流正在降解,但是在偏置应用程序后,这种降解是可逆的。降解机制,并提出了基于两种电容器常见的过程的解释。分析了与密封电容器中电解质蒸发和蒸发相关的问题。
摘要:在所有金属添加剂制造(AM)技术中,有向能量存储(DED)技术,尤其是基于电线的技术,由于其快速产生而引起了人们的极大兴趣。此外,它们被认为是能够生产功能齐全的结构零件,具有复杂几何形状和几乎无限尺寸的近网状产品的最快技术。根据热源,有几种基于电线的系统,例如等离子体弧焊接和激光熔点沉积。主要缺点是缺乏市售的电线;对于说明,没有高强度铝合金线。因此,本综述涵盖了电线生产的常规和创新过程,并包括具有最大工业兴趣的Al-Cu-Li合金的摘要,以使最适合和促进最合适的电线组合物的选择。每个合金元件的作用是WAAM特定线设计的关键;这篇综述描述了每个元素的作用(通常通过年龄硬化,实心解决方案和谷物尺寸减少来加强),并特别注意锂。同时,WAAM部件中的缺陷限制了其适用性。出于这个原因,提到了与WAAM过程有关的所有缺陷,以及与合金的化学组成相关的缺陷。最后,总结了未来的发展,其中包括针对Al-Cu-Li合金的最合适技术,例如PMC(Pulse Multicontrol)和CMT(冷金属传递)。
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
摘要:线弧添加剂制造(WAAM)以其高沉积速率而闻名,从而使大部分生产。然而,该过程在制造铝制零件时面临诸如孔隙率形成,残留应力和破裂的挑战。本研究的重点是通过使用Fronius冷金属转移系统(Wels,Austria)使用WAAM工艺制造的AA5356墙的孔隙率。将墙壁加工成以获取用于拉伸测试的标本。该研究使用计算机断层扫描和拉伸试验来分析标本的孔隙率及其与拉伸强度的潜在关系。分析的过程参数是行进速度,冷却时间和路径策略。总而言之,由于对焊接区域的热量输入较低,增加行进速度和冷却时间显着影响孔径。孔隙率可以减少热量积聚。结果表明,旅行速度的增加会导致孔隙率略有下降。特别是,当将旅行速度从700毫米/分钟提高时,总孔体积从0.42降低到0.36 mm 3。最终的拉伸强度和“来回”策略的最大伸长率略高于“ GO”策略的策略。在拉伸测试后,最终的拉伸强度和屈服强度与计算机断层扫描测量的孔隙率没有任何关系。对于所有扫描标本,测得的体积上孔总体积的百分比低于0.12%。
摘要:从铝制电池释放的热量对放电过程中的性能和运营寿命有很大影响。A理论模型来评估所得的热效应,并将产生的热量分为以下来源:阳极铝氧化反应,阴极氧还原反应,对电池内电阻的热量产生和氢 - 进化反应。对每个部分进行了定量分析,表明所有热量产生源随放电电流密度增加。应注意的是,氢进化引起的热量最多,最多90%。此外,通过将杂化添加剂添加到电解质中,开发了抑制氢进化的调节策略,并且氢进化速率大大降低了50%以上,如产生的热量。这项研究对铝 - 空气电池的热效应分析具有重要的指导,并通过抑制氢的演化来控制热管理过程,从而促进其实际应用。