图 1 两例 ERBB2 扩增的横纹肌肉瘤 (RMS) 的形态学、免疫组织化学 (IHC) 和遗传特征。 (A) 病例 1 中 ERBB2 扩增子范围的全基因组视图 (顶部) 和详细视图 (底部)。 (B) Circos 图描绘了 17 号染色体 (病例 1) 中的结构变异。请注意 17q 染色体臂中两个扩增子之间的交换。17q 中的两个扩增子以红色注释。 (C) IHC 显示病例 1 (左) 和病例 2 (右) 中 HER2 (ERBB2) 蛋白的细胞质表达强烈。 (D) 17 例儿童 RMS 中 ERBB2 的 mRNA 表达水平;两例 ERBB2 扩增的病例的表达值比无扩增的 RMS 高 50 倍以上。y 轴显示 log2 转换中的表达值。 (E)对病例 1 的培养细胞的间期细胞核进行荧光原位杂交 (FISH),表明扩增的序列被组织成双微体 (dmin)
哺乳动物脑皮质的进化膨胀和折叠是由胚胎发育过程中祖细胞扩增的。从近亲分裂后,在啮齿动物谱系中逆转了此过程,导致大脑较小且光滑。啮齿动物进化中这种继发损失的遗传机制仍然未知。我们表明,microRNA mir-3607在远离灵长类动物和雪貂的大型皮质中以胚胎的形式表达,远离灵长类动物的谱系,但在小鼠中却没有。miR -3607在胚胎小鼠皮质中的实验表达导致Wnt/ -catenin信号传导增加,径向胶质神经胶质细胞的扩增(RGC)和心室区域(VZ)的扩展,通过阻断 -catenin抑制剂APC(腺苷polypismatom polypismis Coli)。因此,雪貂中内源性miR-3607的损失减少了RGC增殖,而人脑器官的过表达促进了VZ的扩张。我们的结果确定了一个在哺乳动物进化过程中选择用于次要损失的基因,以限制啮齿动物中的RGC扩增和可能的皮质大小。
DNA 水凝胶最近引起了人们的极大兴趣,因为它们具有高含水量的多孔 3D 结构、类似组织的弹性,并且能够通过其核酸序列进行非常有效的编程,例如,实现形状记忆持久性、分子识别能力和刺激敏感性,使其成为生物医学、传感、催化和材料科学应用的有吸引力的材料。1 在用于制备 DNA 水凝胶的众多方法中,通常基于合成的线性或分支 DNA 基序的自组装,通常借助于酶连接或杂交链式反应,滚环扩增 (RCA) 起着特殊的作用,因为所需的合成寡核苷酸成本相对较低。 2 RCA 使用 phi29 DNA 聚合酶从短的环状 ssDNA 模板开始生成长的串联单链 DNA (ssDNA) 链 (4 20 000 nt),由于其具有极高的合成能力,因此可以在等温条件下廉价地生产大量 DNA。3 与基于杂交的 DNA 水凝胶不同,在杂交效率完全的前提下,DNA 含量可以根据初始 DNA 单体浓度估算出来,4 RCA 产生的 DNA 则不易测量。值得注意的是,到目前为止,还没有通用的方法来准确量化 RCA 水凝胶的 DNA 含量,但这些材料
与全球平均水平相比,北极扩增(AA)北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。 然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。 在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。 令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。 这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。 我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。
硅量子器件中的自旋是大规模量子计算的有希望的候选对象。基于门的自旋量子比特传感提供了具有高保真度的紧凑且可扩展的读出,但是,需要进一步提高灵敏度以满足保真度阈值和实现纠错协议中的快速反馈所需的测量时间尺度。在这里,我们将 622 MHz 的射频门控传感与在 500 – 800 MHz 频段工作的约瑟夫森参数放大器相结合,以减少读取纳米线晶体管中形成的硅双量子点状态所需的积分时间。根据我们实现的信噪比,我们估计平均保真度为 99.7% 的单重态-三重态单次读出可以在 1 μ s 内完成,远低于容错读出的要求,比不使用约瑟夫森参数放大器快 30 倍。此外,约瑟夫森参数放大器允许在较低的射频功率下运行,同时保持相同的信噪比。我们确定噪声温度为 200 mK,其中约瑟夫森参量放大器(25%)、低温放大器(25%)和谐振器(50%)的贡献,显示出进一步提高读出速度的途径。
图3。MGCL₂,KCL和TMAC对在60°C的延长温度下在靶标的90%放大的影响。使用Platinum II TAQ热启动DNA聚合酶在Proflex PCR系统上从金黄色葡萄球菌中扩增了富含的目标序列。每个20 µL反应包含10 ng的金黄色葡萄球菌和其他(a)1、1.5、2或2.5 mmmgcl₂,(b)30、50、70或90 mm kcl或(c)50、70、70、90、90、90、90或110 mm tmac。热循环条件:94°C时2分钟;在94°C,最佳退火温度下15秒的15秒循环(表4),在60°C下为30秒/kb。PCR产品以2%E-Gel 48含Sybr安全染色的琼脂糖凝胶运行。车道M:E-GEL 1 KB Plus Express DNA梯子。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:下一代测序技术通过启用微生物组的社区级序列分析来推动人类微生物组研究的快速发展。尽管所有微生物组测序方法都取决于从样品中恢复DNA作为第一个关键步骤,但裂解方法可能是微生物组谱偏差的主要决定因素。基于温和的酶的DNA制备方法可保留DNA质量,但可以通过未能打开难以溶的细菌来偏向结果。诸如珠子跳动之类的机械方法也会偏向DNA恢复,因为打破较硬的细胞壁所需的机械能可以剪切更容易裂解的微生物的DNA,并且剪切可能会根据跳动的时间和强度而变化,从而影响重复性。我们引入了一种非机械,非酶,新型的新型快速微生物DNA提取程序,适用于16S基因基因基因的微生物组分析应用,以消除珠子的跳动。同时应用碱性,热量和洗涤剂(“快速”方案)在毫克量样品中提供了一致的在困难且易于裂解的细菌等于或更好的群体中,与现有方案相等或更好,从而产生足够的高素质DNA,用于全长长度16S RRNA基因PCR。使用包含困难和易于裂解细菌的模拟细菌群落评估了新型的“快速”方法。人类粪便样品测试将新型快速方法与标准的人类微生物组项目(HMP)方案进行了比较,该方案为肺癌患者和对照组的样品进行了比较。使用PACBIO平台上的V1V3和V4区域的V1V3和V4区域的16S rRNA基因测序分析了从两种方法中恢复的DNA。我们的发现表明,“快速”方案始终产生较高水平的公司物种,这些物种更准确地反映了细菌群落结构的特征,这通过模拟社区评估证实。新型的“快速” DNA裂解协议减少了珠子跳动和酶裂解方法常见的种群偏见,提供了改善微生物社区分析的机会,并结合了将样品输入减少到10毫克或更低的情况,并且可以启用快速传递和同时传递标准板格式中96个样品的裂解。与广泛使用的商业方法相比,这会导致样品处理时间的降低20倍,总体优势降低了2倍。我们得出结论,新型的“快速” DNA提取方案为16S rRNA基因扩增子测序的粪便提供了可靠的替代方法。
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
Amprion,美国加利福尼亚州圣地亚哥(和MSC,C M闪光MSC,医疗中心德国哥廷根Paracels- Elena-Klinik,Kassel,停车与运动障碍,神经病学博士学位,F Valley MD博士,M J Martin PhD和Account MD博士学位); Idibaps,Ciberned,Ern-Rnd,神经局临床研究所。 M J Martin和Count);部门和生理学,美国纽约州神经学系(教授MSC系,K Blennow教授医学博士,H Zeterberg教授医学博士神经病学系Amprion,美国加利福尼亚州圣地亚哥(和MSC,C M闪光MSC,医疗中心德国哥廷根Paracels- Elena-Klinik,Kassel,停车与运动障碍,神经病学博士学位,F Valley MD博士,M J Martin PhD和Account MD博士学位); Idibaps,Ciberned,Ern-Rnd,神经局临床研究所。 M J Martin和Count);部门和生理学,美国纽约州神经学系(教授MSC系,K Blennow教授医学博士,H Zeterberg教授医学博士神经病学系