摘要:人类多能干细胞 (hPSC) 衍生的神经元培养物已成为人类大脑电活动的模型。微电极阵列 (MEA) 可测量细胞培养物或组织的细胞外电位变化,并能够记录神经元网络活动。MEA 已应用于人类受试者和 hPSC 衍生的大脑模型。在这里,我们回顾了使用 MEA 对 hPSC 衍生的二维和三维大脑模型进行功能表征的文献,并在生理和病理背景下检查了它们的网络功能。我们还总结了人类大脑的 MEA 结果,并将其与有关 hPSC 衍生大脑模型的 MEA 记录的文献进行比较。MEA 记录显示二维 hPSC 衍生大脑模型中的网络活动与人类大脑相当,并揭示了疾病模型中与病理相关的变化。与二维模型相比,三维 hPSC 衍生模型(例如脑类器官)具有更相关的微环境、组织结构和对更复杂的网络活动进行建模的潜力。hPSC 衍生的大脑模型重现了人类大脑网络功能的许多方面并提供了有效的疾病模型,但这些方法需要分化方法、生物工程和可用的 MEA 技术方面的某些进步才能充分发挥其潜力。
摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。
摘要:水凝胶是植入生物活性神经界面开发的理想材料,因为神经组织模仿了物理和生物学特性,可以增强神经接口的兼容性。然而,由于不可靠的界面键合,水凝胶和刚性/脱水的电子微结构的整合是具有挑战性的,而水凝胶与微机械制造过程所需的大多数条件不兼容。在此,我们提出了一种新的酶介导的转移打印过程来设计粘合剂生物水凝胶神经界面。通过含有各种导电纳米颗粒(NPS)的明胶甲基丙烯酰基(GELMA)的照片连接来制造供体底物,包括AG纳米线(NWS),PT NWS和PEDOT:PSS:形成可拉伸的导电性的BioelectRode,以形成一种称为np-np-doped geLma的可拉伸性bioelectRode。另一方面,由微生物转谷氨酰胺酶组成的接收器底物构成了与掺入的明胶(MTG-GLN)同时进行的时间控制的凝胶化和共价键增强的粘附,以实现预制的NP型NP型NP型Gelma特征的一步转移印刷。集成的水凝胶微电极阵列(MEA)具有粘合剂,并且在机械/结构上符合稳定的电导率。这些设备在水分上在结构上是稳定的,以支持神经元细胞的生长。尽管引入了AGNW和PEDOT:水凝胶中的PSS NP需要进一步研究以避免细胞毒性,但PTNW掺杂的Gelma表现出可比的活细胞密度。这种基于GLN的MEA有望是下一代生物活性神经界面。
快速扰乱器是动态量子系统,可在随系统规模 N 呈对数增长的时间尺度上产生多体纠缠。我们提出并研究了一类确定性的快速扰乱量子电路,可在近期实验中用中性原子阵列实现。我们表明,三种实验工具——最近邻里德堡相互作用、全局单量子比特旋转和由辅助镊子阵列促进的换位操作——足以生成非局部相互作用图,这些图仅使用 O(log N)个并行最近邻门应用即可扰乱量子信息。这些工具能够以高度可控和可编程的方式直接通过实验访问快速扰乱动力学,并可利用它们来产生具有各种应用的高度纠缠态。
神经科学研究如何在细胞外水平上实施复杂的大脑功能需要体内神经记录界面,包括微电极和读出电路,并且可观察力和空间分辨率增加。神经记录接口的趋势用于采用高通道计数探针或具有密集间隔记录位点的2D微电极阵列,用于记录大型神经元种群,因此很难节省资源。模拟前端的低噪声,低功率要求的规范通常需要大型硅职业,这使问题更具挑战性。减轻该消费区负担的一种常见方法依赖于时间划分多路复用技术,在该技术中,在频道之间部分或完全共享读出的电子设备,同时保留录音的空间和时间分辨率。在这种方法中,共享元素必须在每个通道较短的时间段上操作,因此,在较大的操作频率和信号带宽方面,活动区域被交易。因此,功耗仅受到轻微影响,尽管其他性能指标(例如内噪声或串扰)可能会降低,尤其是在整个读取电路在模拟前端输入中多重的时。在本文中,我们回顾了针对时间划分的多重神经记录系统报告的不同实施替代方案,分析了它们的优势和缺点,并提出了提高性能的策略。
作者的完整列表:Elisa Castagnola;匹兹堡大学生物工程;圣地亚哥州立大学工程学院Thongpang,Sanitta;华盛顿大学,电气与计算机工程系,康复医学,生理学与生物物理学Hirabayashi,Mieko;圣地亚哥州立大学,纳米牛布。SDSU实验室,乔治机械工程系;加利福尼亚大学河滨大学,机械工程deparment,材料科学与工程计划Nimbalkar,Surabhi;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系Nguyen,Tri;圣地亚哥州立大学,纳米牛布。SDSU实验室,桑德拉机械工程系;圣地亚哥州立大学,纳米牛布。SDSU实验室,Alexis机械工程系;圣地亚哥州立大学,纳米牛布。SDSU实验室,詹姆斯机械工程部Bunnell;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系Moritz,Chet;华盛顿大学电气与计算机工程系,康复医学以及生理学与生物物理学Kassegne,Sam;圣地亚哥州立大学,纳米牛布。SDSU实验室,机械工程系
8. CS Clark. 等,“航天用商用镍镉电池:一种行之有效的低地球轨道卫星电力存储替代品”。载于:第五届欧洲空间电力会议论文集,西班牙塔拉戈纳,9 月 21 日至 25 日(1998 年)。
R. Dong、Prof. S. Liu、Prof. X. Jiang 哈尔滨工业大学生命科学与技术学院 中国哈尔滨市南岗区益矿路 2 号 150001 电子邮件:shaoqinliu@hit.edu.cn; jiang@sustech.edu.cn 董荣军,杭聪,陈哲,刘晓玲,钟玲,齐建军,黄勇,蒋晓玲教授 南方科技大学生物医学工程系 中国广东省深圳市南山区学院路 1088 号 518055 王林博士,王林教授,陆英教授 中国科学院脑连接组与操控重点实验室,脑认知与脑疾病研究所 中国科学院深圳先进技术研究院 深港脑科学研究院-深圳基础研究中心 深圳 518055,中国 电子邮件:lp.wang@siat.ac.cn; luyi@siat.ac.cn