实现实际相关的、计算困难问题的量子加速是量子信息科学的核心挑战。使用两个空间维度中多达 289 个量子比特的 Rydberg 原子阵列,我们通过实验研究了解决最大独立集问题的量子算法。我们使用与 Rydberg 阻塞相关的硬件高效编码,实现闭环优化来测试几种变分算法,然后将它们应用于系统地探索具有可编程连接的一类图。我们发现问题难度由解决方案的退化和局部最小值的数量控制,并且我们通过实验将量子算法的性能与经典模拟退火进行了对比。在最难的图上,我们观察到在深电路范围内寻找精确解的超线性量子加速,并分析了其起源。C
全栅环栅 (GAA) 是一种最佳器件配置,它能静电控制沟道长度最窄的晶体管 2,并最大限度地减少器件关断时的漏电流,从而使器件在每次切换时耗散更少。GAA 几何形状有多种可能,并且已经在水平 3 或垂直配置中得到验证。4 – 7 尽管技术解决方案有望最终将晶体管的栅极长度 L g 缩小到几纳米 5,但从一维(长栅极或大宽度)到全尺寸缩放的晶体管的转变对器件操作的影响仍有许多悬而未决的问题。其中,应明确解决所制造器件的质量和可能导致晶体管操作不良或电性能分散的波动源,以提出最终集成的解决方案。但是,经典的表征技术(如迁移率提取)不足以提供有关最终缩放时器件质量的信息,因为迁移率可能会在如此小的栅极长度下崩溃。 8 – 11 低频噪声可以成为一种非常精确的技术,用于表征低噪声纳米器件中的电子传输。12 , 13
摘要 目的。脑皮层电图 (ECoG) 阵列对大脑施加的力在弯曲以匹配颅骨和大脑皮层的曲率时表现出来。这种力量会对患者的短期和长期结果产生负面影响。在这里,我们提供了一种新型液晶聚合物 (LCP) ECoG 阵列原型的机械特性,以证明其更薄的几何形状可以减少可能施加到大脑皮层的力。方法。我们构建了一台低力弯曲试验机来测量 ECoG 阵列弯曲力,计算其有效弯曲模量,并近似计算它们可以对人脑施加的最大力。主要结果。经测试,LCP ECoG 原型的最大力比任何市售 ECoG 阵列的最大力小 20%。然而,作为一种材料,LCP 的刚性比传统上用于 ECoG 阵列的硅胶高出 24 倍。这表明较低的最大力是由于原型的轮廓较薄(2.9 × –3.25 ×)。重要性。虽然降低材料刚度可以降低 ECoG 阵列表现出的力,但我们的 LCP ECoG 阵列原型表明,柔性电路制造技术也可以通过减小 ECoG 阵列厚度来降低这些力。必须对 ECoG 阵列进行弯曲测试才能准确评估这些力,因为聚合物和层压板的材料特性通常与尺度有关。由于所用的聚合物是各向异性的,因此弹性模量不能用于预测 ECoG 弯曲行为。考虑到这些因素,我们使用了四点弯曲测试程序来量化 ECoG 阵列弯曲对大脑施加的力。通过这种实验方法,可以设计 ECoG 阵列以最大限度地减少对大脑施加的力,从而可能改善急性和慢性临床效用。
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。
心脏内脑机构界面(BCIS)可以通过允许用户控制带有记录在大脑中的信号的效应器或辅助设备来恢复受重大瘫痪的人的功能。近年来,运动皮层中的心脏内植入物已用于灵长类动物和人类参与者的BCI控制(Ajiboye等人。2017; Bouton等。2016; Collinger等。2013; Hochberg等。2006; Santhanam等。 2006; Velliste等。 2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2006; Santhanam等。2006; Velliste等。 2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2006; Velliste等。2008; Wodlinger等。 2014)。 最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。 2018; Fifer等。 2020; Flesher等。 2016; Flesher等。 2019; Flesher等。 2021;休斯等人。 2020;休斯等人。 2020)。 鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。 在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人) 2020; Chestek等。 2011;唐尼等。 2018;休斯等人。 2020;詹姆斯等人。 2013; Simeral等。 2011; Suner等。 2005)。2008; Wodlinger等。2014)。最近,通过在体感皮质中刺激电极来添加体感觉反馈(Armenta Salas等人。2018; Fifer等。2020; Flesher等。2016; Flesher等。2019; Flesher等。2021;休斯等人。2020;休斯等人。2020)。鉴于心脏内BCI需要手术植入,因此必须在临床上可行多年才能稳定。在人类和灵长类动物中都研究了这个问题,表明可以从汽车皮层中的电极可靠地记录信号,但设备没有失败,尽管有相当大的受试者间可变性,并且信号随着时间的流逝通常会降低(Bullard等人(Bullard等人)2020; Chestek等。2011;唐尼等。2018;休斯等人。2020;詹姆斯等人。2013; Simeral等。2011; Suner等。2005)。2005)。
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
摘要。本文继续对真核基因组和原核基因组中长单链DNA序列的随机(概率)组织的矩阵tensor研究的矩阵tensor研究。作者揭示了每个基因组DNA的n文本表示中N型概率的相应矩阵在数值上以这种代数形式相互关联,该代数形式具有与已知的张量张量 - 数字天线阵列理论的形式主义的类比。这些阵列将许多单独的天线结合到单个协调的合奏中,并具有独特的新兴特性,因此天线阵列被广泛用于医学,天体物理学,航空电子学等。著名的类比允许提出作者的假设,即基因组DNA的随机组织与生物 - 安特纳纳阵列有关。从这个假设的角度来看,在与基因组DNA的单个分组中收集了许多有关使用天线阵列原理的已知事实。关于天线阵列有利可图的特性生物学含义的这个新主题包括生物进化的问题,遗传密码的起源,再生医学和代数生物学的发展。这些问题与作者对基因组DNA随机特征的量子信息分析的结果共同讨论。关键字:基因组DNA,概率,矩阵,张量产物,HADAMARD产品,天线阵列,光子晶体,液晶,生物素器,量子信息学
摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
图 1.1 RAID0 概念................................................................................................................................................17 图 1.2 RAID1 概念................................................................................................................................................17 图 1.3 RAID1+0 概念........................................................................................................................................18 图 1.4 RAID5 概念.....................................................................................................................................18 图 1.5 RAID5+0 概念.....................................................................................................................................19 图 1.6 RAID6 概念.....................................................................................................................................20 图 1.7 RAID6-FR 概念.....................................................................................................................................21 图 1.8 卷概念.....................................................................................................................................................25 图 1.9 热备援.....................................................................................................................................................27 图 1.10 数据块
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示