尽管疟疾人寄生虫具有巨大的重要性,但其超微结构的一些基本特征仍然晦涩难懂。在这里,我们采用高分辨率体积电子显微镜检查和比较了恶性疟原虫的可传染性男性和女性性血统的超微结构,以及更深入研究的无性血液阶段,重新审视了3D中先前描述的现象。这样做,我们通过示例在配子细胞中表现出多个线粒体的存在来挑战单个线粒体的广泛接受概念。我们还提供了配子细胞特异性细胞抑制剂或细胞口的证据。此外,我们生成了寄生虫内质网(ER)和高尔基体设备的第一个3D重建,以及在感染的红细胞中诱导的配子细胞诱导的外质结构。评估细胞器之间的互连性,我们发现了细胞核,线粒体和apicoplast之间的频繁结构作用。我们提供了证据,表明ER是与众多细胞器和配子细胞的三叶骨膜的混杂相互作用。这些体积电子显微镜资源的公共可用性将有助于其他具有不同研究问题和专业知识的其他人的重新介入。总的来说,我们以纳米尺度重建了恶性疟原虫配子细胞的3D超微结构,并阐明了这些致命的寄生虫的独特细胞器生物学。
•登革热的主要感染与继发性感染一样严重(自然医学:2024年2月6日。DOI:10.1038/s41591-024-02798)•脂肪磷脂疟原虫溶血磷酸酶调节脂肪酸通量和分裂的症状 2023。 42,11225)•植物生物碱小ber碱通过Notch3/akt信号在结核病期间增强肺居民T细胞。 这表明调整免疫记忆可以用作增强宿主抵抗TB的可行方法。 (published in PLOS Pathogens 2023 doi.org/10.1371/ journal.ppat.1011165) • Light chain of a SARS-Cov-2 monoclonal antibody modulates neutralization against Omicron (published in Cell Rep. 2023 13; 42:113150. doi: 10.1016/j.celrep.2023.113150) • Gene therapy in patients with the Crigler-Najjar综合征(出版于新英格兰J. 医学2023卷。 389 doi:10.1056/nejmoa2214084)•由SARS-COV-2重新激活Kaposi肉瘤相关的疱疹病毒,对非院HIV感染的患者(发表在lancet-ebiomedicine 20224 Httpps emant of the Bospital-cov病毒)中 ebiom.2024.104986)•肺癌免疫疗法的新观点(自然通讯发表2024 https://doi.org/10.10.1038/s41467-024-024-466685--- Cell Biol 2023 10.1038/S41556-023-01096-X; 10.1128/MRA.01132-22)2023。42,11225)•植物生物碱小ber碱通过Notch3/akt信号在结核病期间增强肺居民T细胞。这表明调整免疫记忆可以用作增强宿主抵抗TB的可行方法。(published in PLOS Pathogens 2023 doi.org/10.1371/ journal.ppat.1011165) • Light chain of a SARS-Cov-2 monoclonal antibody modulates neutralization against Omicron (published in Cell Rep. 2023 13; 42:113150. doi: 10.1016/j.celrep.2023.113150) • Gene therapy in patients with the Crigler-Najjar综合征(出版于新英格兰J.医学2023卷。389 doi:10.1056/nejmoa2214084)•由SARS-COV-2重新激活Kaposi肉瘤相关的疱疹病毒,对非院HIV感染的患者(发表在lancet-ebiomedicine 20224 Httpps emant of the Bospital-cov病毒)中ebiom.2024.104986)•肺癌免疫疗法的新观点(自然通讯发表2024 https://doi.org/10.10.1038/s41467-024-024-466685---Cell Biol 2023 10.1038/S41556-023-01096-X; 10.1128/MRA.01132-22)
本文比较了人类生殖克隆 (HRC) 和可遗传基因组编辑 (HGE),以确定鼓励禁止新型生殖技术的因素。HRC 遭到立法反对,部分原因是它涉及无性生殖,并被错误地与复制联系在一起。HGE 和其他涉及有性生殖的技术没有这些问题。HRC 还卷入了克隆人类胚胎以获取干细胞的研究。HGE 并非如此,因为科学家学会了如何在不创造胚胎的情况下创造和编辑多能干细胞。然而,HRC 的法律历史预测,与胚胎破坏密切相关的生殖技术将面临激烈的反对。未来禁止的目标可能包括:原核移植,一种线粒体替代疗法的亚型,其中两个受精卵被破坏以重建一个;以及体外配子发生,这是一个未来的过程,在这个过程中,夫妇根据他们的基因特征创造数百个胚胎,同时丢弃绝大多数胚胎。 HGE 尚未被禁止,部分原因是一项拨款附加条款阻止了美国食品药品管理局 (FDA) 批准临床试验。如果附加条款被修改,允许考虑纠正导致严重单基因疾病的突变的申请,本文预测立法者不会颁布禁令。然而,如果基因增强在未来变得可行,就会出现棘手的政策问题,包括对后代的影响。国会可能不会讨论这些问题,而是保留附加条款,从而消除了禁止 HGE 增强的必要性。
引起疟疾的疟原虫每个基因组约 30 Mb,编码约 5000 个基因,但大多数基因的功能仍不清楚。这是因为从序列同源性中获取的功能注释很少,而且与许多模型生物相比,其遗传可处理性较低。近年来,技术突破使得在疟原虫中进行正向和反向基因组规模筛选成为可能。此外,成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 技术的应用大大提高了单基因水平的基因编辑效率。在这里,我们回顾了疟原虫基因筛选的出现,以分析寄生虫基因在基因组规模上的功能及其对理解寄生虫生物学的影响。 CRISPR/Cas9 筛选彻底改变了人类和模型生物的研究,但由于需要更复杂的 CRISPR/Cas9 基因靶向载体库,因此尚未在疟疾寄生虫中实施。因此,我们向读者介绍了相关顶复门弓形虫中基于 CRISPR 的筛选,并讨论了如何调整这些方法来开发基于 CRISPR/Cas9 的疟疾寄生虫基因组规模遗传筛选。此外,由于超过一半的疟原虫基因是正常无性血液阶段繁殖所必需的,并且无法使用敲除方法进行靶向,我们讨论了如何使用 CRISPR/Cas9 来扩大条件基因敲除方法,以系统地为必需基因分配功能。
我们已经对Potamopyrgus estuarinus和Potamopyrgus kaitunuparaoa进行了测序,组装和分析的核和线粒体基因组和转录组,这是新西兰人的两个Prosobranch Snail物种,它们跨越了从河口到新淡水。这两个物种是淡水物种的最接近的亲属,potamopyrgus antipodarum是研究性别,宿主 - 寄生虫协同进化和生物侵入性的模型,因此为理解其异常生物学提供了关键的进化环境。P. esuarinus和P. kaitunuparaoa基因组的大小和整体基因含量非常相似。对基因组含量的比较分析,认为这两个物种具有涉及减数分裂和精子功能的几乎相同的基因,包括七个具有减数分裂特异性功能的基因。这些结果与这两个物种的强制性再生产是一致的,并为对抗杀虫假单胞菌的未来分析提供了一个框架,该物种既包含义务性的性和无性无性谱系,每个物种分别源自性祖先。全基因组多基因的系统发育分析表明,Kaitunuparaoa可能是最接近抗植物的。尽管如此,我们表明,埃斯图拉林和P. kaitunuparaoa之间存在相当大的渗透。该渗入不会扩展到线粒体基因组,该基因组似乎是雌雄同体和kaitunuparaoa P. estuarinus和P. kaitunuparaoa之间杂交的障碍。核编码基因,其产物在关节线粒体核酶复合物中的作用表现出相似的非渗透模式,这表明线粒体和核基因组之间的不兼容性可能阻止了这两种物种之间更广泛的基因流动。
北极高山物种在流动过程中经历了较长的寒冷和不可预测的条件。因此,通常,高山植物同时使用性和无性繁殖手段来最大程度地发挥作用并确保生殖成功。我们使用了北极高山多年生阿拉伯alpina来探索长时间冷暴露在不定生根中的作用。我们将植物暴露于不同的持续时间4°C,并在主茎和腋分支上对不定根进行了评分。我们的生理学研究表明,在4°C下21周后,有未定的根,使冷饱和对这一过程的影响饱和。值得注意的是,特定节间中主要茎的不定根使我们能够确定使用转录组学中冷根形成的基因调节网络。这些数据和组织学研究表明,A. alpina茎的不定根在冷暴露期间启动并在植物后出现在促进生长条件下。虽然不定根的启动与茎中Dr5生长素反应和自由内源性生长素水平的变化无关,但不定根原始的出现是。使用转录组数据,我们辨别出在不定根形成的各个阶段发生的顺序激素反应,并鉴定出与不定根出现的鉴定的补充途径,例如葡萄糖素酸化的代谢。一起,我们的结果强调了低温在高山植物中克隆生长中的作用,并提供了对不定生根不同阶段所涉及的分子机制的见解。
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts.这些独特的细胞在整个生物体的成年生活中持续存在,并且在各种成年海洋无脊椎动物门中都被观察到。MISC在许多生物学过程中起着至关重要的作用,包括针对海洋无脊椎动物的发育生物学现象,例如衰老,延迟衰老,全身再生和无性繁殖。此外,它们是研究干细胞生物学的宝贵模型。尽管有很大的能力,但有关MISC的信息仍然很少,并且在科学文献中散布了。在这篇综述中,我们通过阅读研究和检测各种海洋无脊椎动物生物中的MISC的文章,仔细地收集并汇总了有关杂项检测的有价值信息。审查开始于定义杂项并突出与脊椎动物相比的独特特征。然后,它讨论了无脊椎动物和脊椎动物研究中使用的杂项检测和体外技术的共同标记。这项全面的综述为研究人员和科学家提供了有关海洋无脊椎动物生物中的MISC特征,检测方法和相关生物学现象的凝聚和简洁概述。我们旨在为对海洋无脊椎动物干细胞感兴趣的研究人员和科学家提供宝贵的资源,从而更好地理解其对生物学的广泛意义。随着科学技术的持续进步和对海洋无脊椎动物物种的持续探索,我们预计进一步的发现将扩大我们对MISC的知识及其对生物学的广泛意义。
蚜虫是全球大多数农作物的主要害虫。它们如此成功很大程度上是由于它们生殖方式的可塑性。它们在春季和夏季通过胎生孤雌生殖有效地繁殖,对农作物造成严重损害。夏末,胎生孤雌生殖雌性感知到光周期的缩短,并将此信号传递给胚胎,从而改变其生殖命运,产生有性个体:卵生雌性和雄性。交配后,这些雌性会产下抗寒的卵。早期研究表明,一些编码多巴胺通路关键成分的转录本在长日照和短日照条件下受到调控,这表明多巴胺可能参与了生殖模式转换之前季节性信号的传导。在本研究中,我们旨在更深入地表征该通路的表达动力学,并分析其在豌豆蚜虫 Acyrthosiphon pisum 中的功能作用。我们首先分析了在长日照(无性生殖)或短日照(有性生殖)条件下饲养的蚜虫胚胎和幼虫头中该通路的十个基因的表达水平。然后,我们进行了原位杂交实验,以在胚胎中定位编码多巴胺合成中两种关键酶的 ddc 和 pale 转录本。最后,在有性个体交配后产生的卵子中使用 CRISPR-Cas9 诱变,我们针对 ddc 基因进行了诱变。我们可以在 ddc 突变卵子中观察到强烈的黑色素化默认值,这些卵子可靠地模仿了果蝇 ddc 表型。然而,这种致命的表型使我们无法验证多巴胺作为触发胚胎生殖模式转换所必需的信号通路的参与。
摘要 疟疾是一种毁灭性疾病,导致全球发病率和死亡率显著上升。青蒿素类联合疗法是治疗疟疾的一线疗法,但随着这种疗法的耐药性不断上升,开发具有新作用机制的替代抗疟药的必要性也日益凸显。抑制疟原虫蛋白激酶为药物开发提供了一个尚未得到充分探索的机会。PfPK6 已被确定为恶性疟原虫无性血液阶段增殖的必需激酶,但尚未开展药物化学研究以开发抑制剂。在这项研究中,我们报告了利用分裂荧光素酶三杂交技术,使用 KinaseSeeker 检测法确定 Ki8751 是一种 PfPK6 抑制剂(IC 50 = 14 nM)。设计、合成了一系列 79 种 Ki8751 的 1-苯基-3-(4-(喹啉-4-基氧)苯基)脲衍生物,并评估了它们对 PfPK6 的抑制作用和抗疟原虫活性。通过基团效率分析,我们确定了支架上关键基团对抑制 PfPK6 的重要性,这与 II 型抑制剂药效团一致。我们重点介绍了有助于抗疟原虫活性的尾部基团修饰。我们报告了化合物 67 的发现,它是一种有效的 PfPK6 抑制剂(IC 50 = 13 nM),对恶性疟原虫血液阶段(EC 50 = 160 nM)有效,化合物 79 是一种优秀的 PfPK6 抑制剂(IC 50 < 5 nM),对恶性疟原虫血液阶段(EC 50 = 39 nM)和伯氏疟原虫肝脏阶段(EC 50 = 220 nM)具有双阶段抗疟活性。这些结果为将该化学型进一步开发为新型抗疟药和针对 PfPK6 的化学探针奠定了基础,从而可以进一步研究 PfPK6 的功能。
引言疟疾仍然是一个巨大的全球挑战,2019年报告了2.29亿新病例和409,000例死亡。其致病剂是来自疟原虫属的原生动物寄生虫,其中恶性疟原虫(PF)是最猛烈的。自2015年以来,根除疟疾的进度速度已减慢(1),这表明需要开发新的更好的工具。疟原虫感染是当感染的蚊子释放在血液粉期间平均释放到孢子虫中的数十个孢子虫(2,3)时。孢子岩是细胞外运动寄生虫形式,通过真皮滑行和迁移,最终进入循环并到达肝脏(4)。在长达2-3个小时的旅程中,自由的孢子虫很容易受到伤害,同时暴露于宿主免疫系统(3,5)。一旦在肝脏内,孢子虫会遍历许多细胞屏障,然后最终入侵肝细胞以无症状的繁殖和成熟(4)。7天后,无性寄生虫形式被释放到循环中,从而引起疟疾的临床表现。大多数开发PF -Malaria疫苗的努力是针对孢子虫/肝脏阶段的,因为它们代表了寄生虫生命周期中的瓶颈,并且可以防止血液阶段的疾病进展。疫苗候选物主要以围皮蛋白(CSP)为中心,是最丰富和免疫原性的孢子表面抗原(6,7)。RTS,S/AS01和R21/MM疫苗是主要和最先进的代表(8、9)。CSP特异性mAb能够阻断肝细胞的PF Sporozoite感染,并在体外和动物模型中防止进一步的寄生虫发育(10-12)。在控制人类疟疾感染后,健康志愿者(www.clinicaltrials.gov; NCT04206332)在I期临床试验中显示出保护性功效(13)。
