关于潜在的无限责任以及对他人行为施加责任的不公平性。“ [21]在枪支制造商的情况下,特别是“可能的原告库非常大 - 可能是枪支暴力的成千上万受害者中的任何一个,以及“被告之间的联系,刑事不法行为者和原告之间的联系很遥远。“ [22]在帕特森(Patterson),被告人经营网站,这些网站传统上不被认为是产品。尽管被告据称以其内容算法的方式服务,但帕特森原告的投诉是,2022年布法罗枪击事件的肇事者显示了邮寄到被告网站上的第三方的内容。鉴于它们的巨大影响力,对这些公司的责任含义可能是非常深远的,至少与汉密尔顿所述的枪支制造商一样多。和,就像在汉密尔顿一样,似乎同样存在对被告人对他人的不法行为的责任的担忧同样存在。因此,如果帕特森(Patterson)持有或被其他法院采用,则代表了社交媒体公司产品责任的潜在非常重要的扩展。我们将密切关注该决定的任何潜在吸引力,以及未来的任何简易判决动议。
2024 年 9 月 10 日星期二,INS‘Tabar’ 指挥官 Harish IND (N) 上尉在印度驻希腊共和国(驻捷克布拉格)国防武官 Vijayant Singh IND (A) 上校的陪同下访问了 NMIOTC。
近年来,对包括微机电系统 (MEMS) 和传感器在内的越来越小的芯片的需求急剧增加。自动驾驶技术等技术正在腾飞,市场对减小封装尺寸和提高移动设备性能的压力也在增加。DDAF 越来越多地被用于这些应用中,以将芯片粘合到基板和其他芯片上。DDAF 可用于切割和芯片粘合工艺,取代了使用两种独立材料来切割和粘合芯片的需求。它由 DAF(芯片粘接膜)和基材组成,DAF 层将小芯片粘合到基板和其他芯片上。然而,传统的 DDAF 在芯片尺寸较小时容易出现转移故障 (TF)。这是一种故障模式,在芯片拾取 (PU) 过程中,DAF 层从芯片背面剥落。导致此问题的根本原因有多种;小型芯片的 DAF 附着面积较小,而为增加芯片强度而使芯片背面光滑,导致 DAF 无法锚定到芯片本身。通过使用具有高熔体粘度的 DAF,使 DAF 能够更好地锚定到芯片上,从而改善了 PU 工艺上的 TF。但是,由于材料无法嵌入到基板上,封装可靠性下降。探索了高基板嵌入抑制 TF 的影响因素。为了探索这些因素,实施了直角撕裂强度方法。在分析数据后,发现了一个抑制 TF 的新参数。该参数与 TF 显示出很强的相关性。开发了一种新的 DDAF,可减轻 PU 过程中的 TF。关键词 刀片切割、切割芯片贴膜、MEMS、直角撕裂强度法、转移失败
陶氏公司对所有制造、分销和使用其产品的人以及我们生活的环境都深表关切。这种关切是我们产品管理理念的基础,我们根据该理念评估产品的安全、健康和环境信息,然后采取适当措施保护员工和公众健康以及我们的环境。我们的产品管理计划的成功取决于与陶氏产品相关的每一位个人 - 从最初的概念和研究,到每种产品的制造、使用、销售、处置和回收。客户须知陶氏公司强烈建议客户从人类健康和环境质量的角度审查其制造流程和陶氏产品的应用,以确保陶氏产品不会以非预期或未经测试的方式使用。陶氏公司的工作人员可以回答您的问题并提供合理的技术支持。在使用陶氏产品之前,应查阅陶氏产品文献,包括安全数据表。陶氏公司提供最新的安全数据表。我们今天能为您提供什么帮助?
各种应用(例如太空应用)对高功率密度、高效率电子设备的需求日益增加。高功率密度要求在封装层面进行有效的热管理,以确保工作温度保持在安全的工作范围内,避免设备早期故障。芯片粘接(芯片和法兰之间的粘合层)一直是热瓶颈,依赖于导热率相对较低的共晶焊料。正在开发先进的高导热率芯片粘接材料,包括烧结银和银环氧树脂,以解决这一问题。然而,这些新材料的热导率通常以其块体形式进行评估;体积热导率可能无法代表实际应用中较低的实际“有效”热导率,这也受到界面和空隙的影响。在本文中,频域热反射已调整为在低频下运行,具有深度灵敏度,可测量夹在芯片和法兰之间的芯片粘接层的热导率。
1. 简介 在汽车行业,电气解决方案的高度集成是一大趋势 [1]。因此,行业面临着提供集成度更高、更可靠、更节能的设备的需求 [1-4]。这些设备应安装在汽车有限的空间内。这种内部空间限制以及不断增加的功率密度需要增强散热以在减小尺寸的同时提高性能 [2]。PCB 嵌入式技术是解决这些问题的绝佳解决方案。事实上,它通过优化互连、减小尺寸和重量以实现小型化来提高电源模块性能 [1, 5]。这种优化可降低寄生电感并获得更好的热管理 [1, 6, 7]。本文选择的一个应用示例是智能皮带驱动起动发电机。对于此应用,我们采用了 PCB 嵌入式技术。对于后一种情况,本研究涉及一种新电源模块概念的可行性,该概念包含四个 100 V Si MOSFET ST315N10F7D8,作为单个开关并联,高度集成在 48 V/400 A 电机中,一方面减小体积和重量,另一方面提高热管理和芯片粘接的机械强度。该技术基于将 Si MOSFET 集成到 PCB 内部,使用银浆烧结进行芯片粘接和预浸渍复合纤维层压。本文将重点描述更为坚固的组装工艺,随后对原型进行电气测试以展示其功能,而机械测试将展示其强度。2. PCB 嵌入式组装设计其原理是使用基于厚铜板的绝缘金属基板 (IMS) 来传输大电流并优化散热。芯片堆叠在两块铜板之间以便于嵌入。芯片和铜板之间的连接由银烧结工艺确保。电绝缘由层压在这些铜板之间的预浸渍复合纤维层实现(见图 1)。此外,芯片栅极烧结到铜箔上,并且可以通过镀通孔 (PTH) 访问该铜箔。
扁平无引线 (QFN) 半导体封装是增长最为稳定的芯片载体类型之一,随着原始设备制造商 (OEM) 努力将更多的信号处理功能放入更小的空间,预计 QFN 封装将继续增长。由于 QFN 封装体积小、尺寸紧凑、输入/输出高、散热性好,因此成为芯片组整合、小型化和高功率密度芯片的热门选择,尤其是汽车和射频市场。与任何封装一样,可靠性至关重要,由于 QFN 封装被广泛接受,OEM、集成设备制造商 (IDM) 和外包组装和测试供应商 (OSATS) 要求继续提高 QFN 封装的可靠性。化学工艺处理铜引线框架的表面,以增强模塑化合物的附着力,并减少芯片封装中的分层,从而提高 QFN 封装的可靠性。这些化学工艺导致铜表面微粗糙化,同时沉积一层耐热薄膜,增强环氧封装材料和引线框架表面之间的化学键合。通常,这种工艺可以可靠地提供 JEDEC MSL-1 性能。虽然这种化学预处理工艺在分层方面提供了更好的性能,但它会给引线框架封装商带来其他挑战。表面粗糙度的增加会加剧芯片粘接粘合剂渗出(环氧树脂渗出或 EBO)的趋势,导致银填充粘合剂分离并对封装质量和可靠性产生负面影响。此外,渗入引线框架表面的任何环氧树脂都会干扰其他下游工艺,例如向下粘合或模塑料粘合。
光学 MEMS 器件对于激光雷达和 AR 汽车应用越来越重要。准确预测和补偿封装翘曲对于保持精确的光学对准和长期可靠性至关重要。团队必须开发一个预测模型来模拟动态热分布期间附着在 PCB 基板上的芯片的翘曲/变形。
各种电子封装都在极其恶劣的环境下工作,这需要较长的使用寿命,对微电子界来说是一个重大挑战。200 o C 以上的工作温度加上高压、振动和潜在的腐蚀性环境意味着,在如此高温下工作的电子系统的开发中仍然存在一些技术问题。最近的高温应用技术已经出现,能够承受高达 300 o C 的高温。烧结银是极端环境下芯片粘接的潜在候选材料之一。本研究旨在通过研究烧结银材料,了解硅芯片粘接材料在恶劣环境下性能下降/失效的方式和原因。开发了一种常用于表示微电子封装组件的二维轴对称芯片粘接模型。FE 模型可以很好地理解不同引线框架材料、烧结银和芯片厚度的单一参数变化的影响。烧结银厚度对塑性应变的影响非常小。此外,在芯片方面,硅芯片和烧结银之间的局部热失配是最重要的负载因素。此外,较厚的芯片会在芯片中产生更高的应力。
UAD Flat No-Leads(QFN)半导体软件包代表了最稳定的芯片载体类型之一,预计随着原始设备制造商(OEMS)努力将更多的信号处理放入较小的空间中,它们可以继续生长。由于它们的低调,凝结的外形,高I/O和高热量耗散,因此它们是芯片组合固结,微型化和具有高功率密度的芯片的流行选择,尤其是对于汽车和RF市场。与任何软件包一样,可靠性至关重要,并且由于其广泛接受,OEM,集成设备制造商(IDM)以及外包组装和测试供应商(OSAT)的需求继续提高QFN的可靠性。处理铜铅框架表面,增强霉菌复合粘附并减少芯片包装中的分层的化学过程,可提高QFN的可靠性。这些化学过程会导致铜表面的微型粗糙,同时沉积热稳健的膜,从而增强了环氧封装剂与铅框架表面之间的化学键。通常,这种类型的过程可以可靠地提供JEDEC MSL-1性能。虽然这种化学预处理过程在分层方面提供了改进的性能,但它可以为铅框架打包器带来其他挑战。增加表面粗糙度放大了模具的趋势附着在流血(环氧树脂流出或EBO)上,从而导致充满银色的粘合剂,以分离和负面影响包装质量和可靠性。此外,在铅框架表面出血的任何环氧树脂都可以干扰其他下游过程,例如下键或霉菌化合物粘附。