课程目标:1. 介绍各种数学概念和模型,并提供实施这些模型所需的技能。2. 对各种数值和数据进行批判性评估。3. 培养对非确定性问题建模的设计技能。预期课程成果:1. 展示对数据科学中与线性代数、概率和微积分相关的基本数学概念的理解并运用它们。 2. 应用线性模型进行回归,使用线性模型进行分类 3. 采用核模型、SVM 和 RVM 4. 将问题概念化为图模型、混合模型,并使用估计最大化算法进行分析 5. 用说明性例子进行演示 PCA 单元:1 线性代数 3 小时 矩阵、求解线性方程、向量空间、线性独立性、基和秩、线性映射、仿射空间、范数、内积、正交性、正交基、函数内积、正交投影 单元:2 矩阵分解 4 小时 行列式和迹、特征值和特征向量、Cholesky 分解、特征分解、奇异值分解、矩阵近似 单元:3 向量微积分 4 小时 单变量函数的微分、偏微分和梯度、向量值函数的梯度、矩阵的梯度、计算梯度的有用恒等式、反向传播和自动微分、高阶导数、线性化和多元泰勒级数。单元:4 概率、分布和优化 4 小时 概率空间的构建、离散和连续概率、求和规则、乘积规则和贝叶斯定理、汇总统计和独立性、高斯分布、共轭和指数族、变量变换/逆变换、连续优化、使用梯度下降的优化、约束优化和拉格朗日乘数、凸优化单元:5 数据模型 4 小时 数据、模型和学习、经验风险最小化、参数估计、概率建模和推理、有向图模型、模型选择
Quantum机器学习(QML)是一个新兴的研究领域,主张使用量子计算来进步机器学习。由于发现了参数变化量子电路(VQC)以替换人工神经网络的可容纳能力,因此它们已被广泛采用以在量子机学习中的不同任务中采用。然而,尽管它们有可能超过神经网络,但VQC限于量子电路可伸缩性的挑战,仅限于小规模应用。为了解决这个缺点,我们提出了一种算法,该算法使用张量环表示在电路中压缩量子状态。使用张量环表示中的输入Qubit状态,单量子门保持张量环表示。但是,对于两个Qubit门而言,情况并非如此,其中使用近似值将输出作为张量环表示。使用此近似值,与精确的仿真算法相比,与指数增加相比,存储和计算时间在量子数和层数中线性增加。此近似值用于实现张量环VQC。使用基于梯度下降的算法进行张量环VQC参数的训练,其中使用了反向传播的效果方法。在两个数据集上评估了所提出的方法:分类任务的虹膜和MNIST,以使用更多量子位来显示提高准确性。关键字:变分量子电路,张量网络,有监督的学习,classifation我们使用各种电路架构实现了虹膜数据集的测试精度为83.33%,MNIST数据集的二进制和三元分类为99.30%和76.31%。IRIS数据集的结果优于Qiskit上的VQC上的结果,并且可扩展,这证明了VQC用于大规模量子机器学习应用程序的潜力。
背景:围绝经期是具有卵巢衰竭迹象的女性生理变化的时期,包括绝经期和更年期后的1年。卵巢功能在上绝经妇女中下降,雌激素水平降低会导致各种器官功能的变化,这可能导致心血管疾病。重大的不良心血管事件(MACE)是临床事件的组合,包括心力衰竭,心肌梗塞和其他心血管疾病。因此,本研究探讨了影响围绝经内膜妇女中MACE发生的因素,并使用三种算法为MACE风险因素建立了预测模型,从而比较了其预测性能。患者和方法:总共411名被诊断为Binzhou医科大学医院诊断为MACE的绝经妇女被随机分为训练集和7:3之后的测试组。根据每个变量10个事件的原理,训练集样本量就足够了。在训练集中,随机森林(RF)算法,反向传播神经网络(BPNN)和逻辑回归(LR)用于构建半绝经期妇女的MACE风险预测模型,并使用了测试集来验证该模型。根据主题操作特征曲线(AUC)下的准确性,灵敏度,特异性和面积(AUC)评估了模型的预测性能。结果:总共包括26个候选变量。RF模型,BPNN模型和逻辑回归模型下ROC曲线下的面积为0.948、0.921和0.866。对逻辑回归和预测MACE风险的ROC曲线AUC的比较显示出统计学上的显着差异(z = 2.278,p = 0.023)。结论:RF模型在预测围绝经内苏联妇女的狼牙棒风险方面表现出良好的表现,该妇女提供了早期识别高危患者和有针对性干预策略的发展的参考。关键字:主要的不良心血管事件,机器学习,围绝经期,风险因素
摘要 - 急流尖峰神经网络(SNN)的灵感来自生物神经系统的工作原理,这些原理提供了独特的时间动态和基于事件的处理。最近,通过时间(BPTT)算法的错误反向传播已成功地训练了局部的SNN,其性能与复杂任务上的人工神经网络(ANN)相当。但是,BPTT对SNN的在线学习方案有严重的局限性,在该场景中,需要网络同时处理和从传入数据中学习。特别是,当BPTT分开推理和更新阶段时,它将需要存储所有神经元状态以及时计算重量更新。要解决这些基本问题,需要替代信贷分配计划。在这种情况下,SNN的神经形态硬件(NMHW)实现可以极大地利用内存计算(IMC)概念,这些概念(IMC)概念遵循记忆和处理的脑启发性搭配,进一步增强了他们的能量效率。在这项工作中,我们利用了与IMC兼容的生物学启发的本地和在线培训算法,该算法近似于BPTT,E-Prop,并提出了一种支持使用NMHW的经常性SNN推理和培训的方法。为此,我们将SNN权重嵌入了使用相位变更内存(PCM)设备的内存计算NMHW上,并将其集成到硬件中的训练设置中。索引术语 - 在线培训,尖峰神经网络,神经形态硬件,内存计算,相位变化内存我们使用基于PCM的仿真框架和由256x256 PCM Crossbar阵列的14NM CMOS技术制造的内存内计算核心组成的NMHW开发了模拟设备的精确度和瑕疵的方法。我们证明,即使对4位精确度也是强大的,并实现了32位实现的竞争性能,同时为SNN提供了在线培训功能,并利用了NMHW的加速收益。
CO1 Understand the concepts of Vector space and inner-product spaces CO2 Apply the linear algebra concepts in approximations and matrix decompositions CO3 Understand functions of several variables, gradients relevant for machine learning CO4 Apply optimization techniques in real life problems CO5 Acquire sound mathematical aspects of machine learning Syllabus: Linear Algebra : Vector spaces, linear independence, basis, linear transformations,坐标,线性变换,仿射空间,仿射映射的矩阵表示;内部产物空间 - 矢量空间上的内部产品和规范,长度,角度,正交补充,投影,最小平方近似,革兰氏schmidt过程,旋转;矩阵分解 - cholesky分解,特征分解和对角线化,奇异值分解;微积分和优化:几个变量的函数,矩阵的梯度,用于计算梯度的有用身份,反向传播和自动分化,深网中的梯度,线性化和多元泰勒级数;使用梯度下降,使用Lagrange乘数,凸优化的梯度下降优化 - 凸集,凸功能,线性编程,二次编程,legendre -fenchel transform,并凸出机器学习中的数学方面:线性回归和参数估计;降低降低 - 主成分分析,线性判别分析;高斯混合模型的密度估计;用支持向量机的分类 - 分离超平面,原始和双支持向量机,内核;学习资源:教科书:1。机器学习的数学,马克·彼得·迪森罗斯(Mark Peter Deisenroth),A。AldoFaisal和Cheng ong ong,剑桥大学出版社,2020年参考书:1。线性代数,Stephen H. Friedberg,Arnold J. Insel和Lawrence E. Spence,Pearson,2019年,第五版2。线性代数和从数据中学习,吉尔伯特·斯特朗线性代数和用于机器学习的优化,Charu C. Aggarwal,Springer,2020
背景:创伤是全球第三大死亡原因,也是 44 岁以下人群的首要死亡原因。对于创伤患者,尤其是当天早些时候受伤的患者,动脉血气 (ABG) 被视为黄金标准,因为它可以为医生提供重要信息,例如检测内伤程度,尤其是肺部损伤程度。但是,通过实验室方法测量这些气体是一项耗时的任务,而且很难对患者进行采样。测量这些气体所需的设备也很昂贵,这就是为什么大多数医院没有这种设备的原因。因此,无需临床试验即可估算这些气体可以挽救创伤患者的生命并加速他们的康复。方法:在本研究中,通过收集有关 2280 名创伤患者的信息,提出了一种基于人工神经网络的动脉血气估计和预测方法。在所提出的方法中,通过训练前馈反向传播神经网络(FBPNN),神经网络只能根据患者的初始信息预测这些气体的量。所提出的方法已经在MATLAB软件中实现,并且收集的数据测试了其准确性,并给出了其结果。结果:结果显示预测动脉血气的准确率为87.92%。预测的动脉血气包括PH,PCO2和HCO3,其准确率分别为99.06%,80.27%和84.43%。因此,所提出的方法在预测动脉血气方面具有相对较好的准确性。结论:鉴于这是第一项使用初始患者信息(收缩压 (SBP)、舒张压 (DBP)、脉搏率 (PR)、呼吸频率 (RR) 和年龄)预测动脉血气的研究,并且基于结果,所提出的方法可以成为协助医院和实验室专家的有用工具。关键词:动脉血气、创伤、神经网络、预测。
储层计算是一种植根于经常性神经网络的时间序列处理的监督机器学习方法[1,2]。受到大脑机制的启发,许多相互连接的人工神经元过程输入输入并显示内部记忆。反复的神经网络随后适合于语音识别等时间任务[3,4],但以难以训练的代价。网络的所有权重需要在时间[5]中使用反向传播进行训练,这是一种耗时的,并非总是在融合[6]。不同,在储层计算(RC)中,仅训练输出层的权重以处理信息[7,8]。这些结构是由三个元素组成的:将数据注入系统中的输入层,由随机连接的大量神经元(或节点)组成的储层,以及一个外部(或读取)层以从储层中提取信息。在储层上的某些条件下,用简单的线性回归训练输出层就足够了[1,8]。在本文中,我们使用单个非线性节点(如[9]中)提供了储层协议的设计。尽管最近的作品已通过光学频率梳子的频率组件成功实现了储层和神经形态的组合[10-12],但我们在这里利用了时间特征,即脉冲基础,光频率梳子作为储层的节点。此外,使用相干性同伴检测,因此可以在场的相分量中编码信息,而不是其强度或弹性。我们表明,尽管有少量的节点和低可线性的节点,但我们的协议具有良好的性能,同时显示非线性记忆和预测可供使。我们的系统建立在可以使用光脉冲来构建尖峰储层的概念上[13,14],并且信息注入的相位编码可以在光子储层计算机中获得更好的性能[15,16]。基于光学的计算[17]可能能够给予对电子设备的速度或能源效率。
在世界许多地方,心脏病是死亡率诊断的主要原因,这对于有效的医疗护理和预防心脏病发作和其他心脏事件至关重要。深度学习算法在基于医学数据(包括心电图(ECG)和其他健康指标)准确预测心脏病方面表现出了希望。借助此摘要,我们提倡根据CNNS进行深度学习有效心脏病预测的深度学习算法。提出的方法结合了心电图信号,人口统计数据和临床测量结果,确定了患者心血管疾病的危险因素。提出的基于CNN的模型包括多个层,例如卷积的模型,合并的模型和完全连接的模型。该模型以ECG信号的形式以及人口统计数据和临床测量结果采用输入,并使用卷积层从原始数据中获取功能。为了减少这种效果,合并层是提取特征的维度,而已经完全链接到与提取特征估算心血管疾病的风险的层。培训和评估建议的模型,我们咨询了大量的心电图信号,以及患有或没有心脏病的患者临床数据。训练和测试集是从数据集测试阵列中创建的,该原型是使用反向传播和随机梯度下降训练的。使用标准定量指标(例如F1得分,召回率和准确率)评估该模型。实验的结果证明了建议的基于CNN的模型在预测心脏病方面具有很高的精度,总体准确性超过90%。该模型还优于心脏病预测的经典技术的几种替代方法,包括更传统的AI算法形式的不同形式的深度学习模型。总而言之,基于CNNS的拟议深度学习算法显示出有效心脏病预测的巨大潜力。该模型可以整合到医疗保健系统中,以为心脏病患者提供准确,及时的诊断和治疗。可以进行进一步的研究,以优化模型的性能并测试其对不同患者人群的有效性。
分别来自统计力学和贝叶斯概率的方法对于思考某事是否发生的可能性来说是截然不同的。统计力学是理论物理学的一个领域,在神经网络中主要用作寓言;作为在一个领域创建的模型,并(非常有用地)应用于另一个领域。这几乎就像用物理学来讲故事。这些方法可以成功使用的想法是如此极端,以至于这些方法可以在神经网络和深度学习中找到新家几乎令人震惊。统计力学的概念是受限玻尔兹曼机 (RBM) 学习方法的核心。受限玻尔兹曼机使用的底层方法与随机梯度下降实现(例如反向传播)所使用的方法非常不同。这意味着 RBM 可以具有多层架构并学会区分更复杂的模式,从而克服我们之前讨论过的简单多层感知器 (MLP) 的局限性。统计力学处理的是只能通过其能量状态来区分的小单元的发生概率。相比之下,贝叶斯概率提供了一种截然不同的思考事情发生概率的方式。这两种面向概率的方法共同为高级机器学习方法奠定了基础。既然我们已经确定了统计力学和贝叶斯方法的重要性,我们将把注意力(针对本章和紧接着的章节)限制在统计力学及其与神经网络的基础关系上。稍后,当我们讨论更高级的主题时,我们将全面讨论统计力学和贝叶斯方法的融合。统计力学在神经网络中的作用首次为人所知是在 1982 年 John Hopfield 发表他的研究成果时 [1]。他的研究成果借鉴了 Little 及其同事在 1974 年 [2] 提出的观点。本章介绍了统计力学中的一些关键概念;足以理解一些经典论文的主题:Hopfield 的原创成果(介绍了后来被称为 Hopfield 网络的内容)以及由 Geoffery Hinton 及其同事开发的玻尔兹曼机的一些关键成果。
人工智能 (AI) 与计算机一样古老,可以追溯到 1945 年的 ENIAC (电子数字积分计算机)。“人工智能之父”约翰·麦卡锡在 1956 年他召集的达特茅斯会议上对人工智能进行了定义,他指出“学习的每个方面或智能的任何其他特征原则上都可以得到如此精确的描述,以至于可以让机器对其进行模拟。” 1958 年,他专门为人工智能开发了 LISP 语言。20 世纪 60 年代、70 年代和 80 年代见证了专家系统和一些自然语言系统的发展。20 世纪 90 年代,机器学习得到了发展。21 世纪的特色是大数据;2010 年代和 2020 年代是神经网络。神经网络理论是在 20 世纪 40 年代发展起来的,第一个神经网络是在 20 世纪 50 年代、60 年代和 70 年代设计的。反向传播训练是在 20 世纪 80 年代发展起来的,循环神经网络和卷积神经网络是在 20 世纪 90 年代和 21 世纪发展起来的,而生成对抗神经网络是在 2014 年发展起来的。2017 年,Vaswani 等人 1 提出了一种新的网络架构 Transformer,它使用了注意力机制,省去了循环和卷积机制,所需的计算量大大减少。这被称为自注意力神经网络。它允许将语句的分析分成几个部分,然后并行分析它们。这是自神经网络诞生以来唯一真正重大的创新,因为它显著减少了推理和训练的计算负荷。神经网络的功能与人脑相同,使用大脑神经元、树突、轴突和突触的数学等价物。计算机和大脑都使用电信号,但神经脉冲是通过电化学方式传输的,这比计算机中的纯电流慢得多。轴突被髓鞘隔离,髓鞘可以大大加快传输速度,大量髓鞘化可以使速度提高 100 倍。2 GPT-3 系统中的人工智能神经网络在 2023 年就已经拥有爱因斯坦的智商,到现在可能已经是人类的 1000 倍。3 神经网络的心理层面在 1993 年由 K. Anders Ericsson 等人在一部被广泛称为“10,000 小时参考”的作品中描述。这适用于任何类型的技能——演奏乐器、做数学、参加体育比赛。当然,那些出类拔萃的人确实练习了很多,但更重要的是深度思考。爱立信并不了解其中的机制。2005 年,R. Douglas Fields 提出了