抽象准确的功率损失估计对于有效的电力系统操作和计划至关重要。传统方法依赖于假设,导致不准确。这项研究采用了多层馈送神经网络(MFNN)来开发一个模型,该模型估计电力线中的真实和反应性损失。负载流技术用于获得训练多种模型的变量。调整神经元数并比较其他模型的性能指标后,选择了所需的模型。使用MATPOPTOR对118个BUS IEEE测试网络进行建模。Levenberg-Marquardt反向传播算法对生成数据训练了该模型。结果表明,25-神经元模型表现最好,在1000个时期达到了最小平方误差(0.00047543)。相关系数显示20个神经元和25个神经元模型的值为0.9999。分析确定了25个基于训练的模型是预测功率损耗的最准确的模型。据观察,25-神经元模型以1000个时期的最高相关系数(0.99999)达到了最佳性能(0.99999)和最小平方误差(0.00047543)。这项研究证明了ANN在估计传输线中功率损失方面的有效性。推荐的25个基于基于Neuron的训练有素的模型提供了研究模型的最佳预测,从而提高了电力系统效率和计划。关键字:神经网络,神经元,负载流,Levenberg-Marquardt,Newton Raphson
物理计算元素的响应时间是有限的,神经元也不例外。在皮质网络的分层模型中,每层都引入了响应滞后。物理动力学系统的这种固有属性导致刺激的处理延迟,并导致网络输出和启发性信号之间的时机不匹配,因此不仅会推断,而且还可以学习。我们引入了潜在平衡,这是一个慢速组件网络中推断和学习的新框架,通过利用生物神经元的能力来避免这些问题,以相对于其内存潜力进行输出。该原理可以独立于网络深度,可以实现准稳定推断,并避免需要分阶段可塑性或计算昂贵的网络松弛阶段。我们从依赖网络的广义位置和动量的前瞻性能量函数中共同得出脱离神经元和突触动力学。所得模型可以解释为具有连续时间,泄漏的神经元动力学和连续的局部局部可塑性的深层皮质网络中误差反向传播的误差。我们展示了对标准基准数据集的成功学习,并使用完全连接和连接的体系结构来实现竞争性能,并展示了如何将我们的原理应用于皮质微电路的详细模型。此外,我们研究了模型对时空底物缺陷的鲁棒性,以证明其在体内或在硅中的物理实现的可行性。§
摘要 — 从梯度下降中得出的在线突触可塑性规则在广泛的实际任务中实现了高精度。然而,它们的软件实现通常需要繁琐的手工梯度或使用梯度反向传播,这牺牲了规则的在线能力。在这项工作中,我们提出了一种自定义自动微分 (AD) 管道,用于稀疏和在线实现基于梯度的突触可塑性规则,该管道可推广到任意神经元模型。我们的工作结合了前向 AD 的反向传播类型方法的编程简易性,同时节省了内存。为了实现这一点,我们利用在线突触可塑性的优势计算和内存扩展,提供一种固有稀疏的 AD 实现,其中如果张量是对角的,则昂贵的张量收缩被简单的元素乘法取代。基于梯度的突触可塑性规则(如资格传播 (e-prop))恰好具有这种特性,因此从这一特性中获益匪浅。我们在合成任务中展示了梯度反向传播与梯度对齐,其中 e-prop 梯度是精确的,以及音频语音分类基准。我们展示了内存利用率如何随网络规模而变化,而不依赖于序列长度,这与前向 AD 方法的预期一致。索引术语 — 算法、神经形态计算、资格传播、自动微分
摘要 - Bio启发的学习最近一直在越来越受欢迎,因为反向传播(BP)在生物学上不合理。在文献中提出了许多算法,它们在生物学上比BP更合理。然而,除了克服BP的生物学不可使用之外,仍然缺乏使用生物启发算法的强大动机。在这项研究中,我们对BP与多种生物启发的算法进行了整体比较,以回答生物学习是否比BP的其他好处的问题。我们在不同的设计选择下测试生物叠加,例如仅访问部分培训数据,训练时期数量的资源约束,神经网络参数的稀疏以及在输入样本中添加噪声。通过这些实验,我们明显发现了生物算法比BP的两个关键优势。首先,当不提供整个培训数据集时,生物算法的表现要比BP好得多。当仅20%的培训数据集可用时,五个生物算法中的四个测试的均优于BP的精度高达5%。其次,即使有完整的数据集可用,生物叠加学的学会更快地学习,并在较小的训练时期融合到稳定的精度,而不是BP。Hebbian学习,特别是在仅5个时代学习,而BP则需要100个时代。 这些见解提出了利用生物学习的实际原因,而不仅仅是它们的生物学合理性,还指出了有趣的新方向,以实现生物学习的未来工作。Hebbian学习,特别是在仅5个时代学习,而BP则需要100个时代。这些见解提出了利用生物学习的实际原因,而不仅仅是它们的生物学合理性,还指出了有趣的新方向,以实现生物学习的未来工作。
深度学习已重新定义了人工神经网络的兴起,这是受到大脑神经元网络的启发。多年来,AI和神经科学之间的这些相互作用为这两个领域带来了巨大的好处,从而使神经网络可以在大量应用中使用。神经网络使用反向分化的有效实现,称为反向传播(BP)。然而,这种算法通常因其生物学上的不可使用性而受到批评(例如,缺乏众议员的本地更新规则)。因此,越来越多地研究了依靠预测性编码(PC)的生物学上合理的学习方法,即描述大脑中信息处理的框架。最近的著作证明,这些方法可以将BP近似于多层感知器(MLP)的一定余量,并在任何其他复杂模型上均非渐近,并且PC的变量零差异推理学习(Z-IL)能够准确地在MLP上实现BP。然而,最近的文字还表明,尚无生物学上合理的方法,可以准确地复制BP在Complex模型上的重量更新。为了填补这一空白,在本文中,我们通过在计算图上直接定义它来概括(PC和)Z-IL,并表明它可以执行精确的反向分化。什么结果是第一个PC(并且在生物学上是合理的)算法,它等同于BP在任何神经网络上更新参数,从而在神经科学和深度学习的构图研究之间提供了桥梁。此外,以上结果尤其是立即提供了BP的新型局部和平行实现。
抽象的心肌炎是一种严重的心血管疾病,如果不及时治疗,可能会导致严重的后果。它是由病毒感染触发的,并出现诸如胸痛和心脏功能障碍之类的症状。早期检测对于成功的治疗至关重要,心脏磁共振成像(CMR)是识别这种情况的宝贵工具。但是,由于对比度较低,噪声可变以及每名患者的多个高CMR切片的存在,使用CMR图像检测心肌炎可能具有挑战性。为了克服这些挑战,该方法融合了先进的技术,例如卷积神经网络(CNN),改进的差异进化(DE)算法(DE)算法以及用于培训的基于增强学习(RL)模型。开发这种方法由于来自德黑兰OMID医院的Z- Alizadeh Sani心肌炎的分类不平衡,提出了重大挑战。为了解决这个问题,培训过程被构建为一个顺序决策过程,在该过程中,代理会获得更高的奖励/罚款,以正确/错误地对Mi-Nority/多数派类进行分类。此外,作者提出了一种增强的DE算法来启动反向传播(BP)过程,从而克服了基于梯度的方法的初始化灵敏度问题,例如训练阶段的后退传播。通过基于标准性能指标的实验结果证明了拟议模型诊断心肌炎的有效性。总的来说,这种方法显示出加快CMR图像的分类,以自动筛查,促进早期检测和成功治疗心肌炎。
邀请在2024年12月AI的全球问题上关于AI的全球问题的神经访问研讨会2024年12月在2024年12月的开放问题,2024年10月CIFAR DEEP LEAD LEAVY SUMMLE暑期夏季学校2024年7月,多伦多大学学生AI学生AI大学学生AI 2023年1月2023年1月1月1月的剑桥大学cambridge University computational and Biological Lab Scienter 2022年多伦多大学学校(高中)研究俱乐部(远程)2022年4月神经研讨会:编程语言和神经成像系统(遥远)2021年12月Schwartz-riesman Institute Institute研讨会系列(远程)2021年11月)ICCV ICCV ICCV关于Neural Architect on Neural Architect:现在和未来的(远程(遥远)2021年10月20日至2021年10月20日Keynote:K. ICML Workshop on Time Series (remote) July 2021 Oxford University, StatML Centre for Doctoral Training Seminar (remote) July 2021 Centre for Mathematics and Algorithms for Data, University of Bath (remote) July 2021 Microsoft Research AutoML Lecture Series (remote) May 2021 Flatiron Institute, Center for Computational Mathematics May 2021 ICLR Workshop on Deep Learning for Simulation (remote) April 2021 University College伦敦,DeepMind/Ellis CSML研讨会系列(遥控)2021年2月,贝叶斯深度学习(远程)Neurips Europe Meetup 2020年12月Neurips研讨会:超越反射(远程)2020年12月
关于FDP:教师发展计划将有助于使用Python在医疗应用中传播DL和机器学习领域的知识。它使参与者能够了解如何使用ML和DL来创新和改善与医学相关的应用程序。深度学习是一个快速增长的人工智能领域,涉及计算机算法的研究和设计,以学习多个抽象级别的数据表示数据的良好表示。由于数据是压倒性的,因此组织正在努力提取他们做出更明智的业务决策所需的强大见解。参与者将接受动手训练的培训,以便深入了解ML&DL的领域,并将其暴露于可行性和未来的范围主要课程内容:1。人工智能,机器学习和深度学习简介2。在机器学习,深度学习和应用中进行研究3。回归模型和类型4。perceptron,多层感知和反向传播5。Python 6。决策tress,无监督的学习方法,k均值7。降低降低方法,PCA 8。支持向量机9。深度学习简介10。CNN型号和类型11。生成的AI,自动编码器和GAN的12。应用程序13。对象检测和细分进行此计划:该计划将由NIT Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:
I.简介。问题陈述多年前,笛卡尔曾经通过禁止的窗户看着庭院中生长的橡木,意识到,借助窗户晶格,可以按数字来指定橡木(树干,树枝,树枝)的部分位置,即以数字为单位来数字化橡木!通过降低晶格的网格尺寸,它将具有越来越多的细节,可以将橡木数字化。笛卡尔大叫:“尤里卡!”并创建了一个矩形的笛卡尔坐标系。这是物理学数学和数字化开始中至关重要的时刻。任何物质对象都可以使用笛卡尔坐标编码。该对象的运动可以通过笛卡尔坐标的功能转换来描述。我们可以说创建了物理空间的数值图像。今天的数字化始于那个事件。本文讨论了建立人工智能系统的两个历史上建立的方向[1-3]:专家系统,神经网络。神经网络和专家系统是大量系统,它们的结构类似于神经元的神经组织。最常见的体系结构之一,具有错误反向传播的多层感知器,模拟神经元作为分层网络的一部分,每个高级神经元通过其输入连接到底层层的神经元的输出[1]。逻辑和符号运营学科近年来已经主导了人工神经网络。例如,专家系统已得到广泛促进,并取得了显着的成功以及失败。一些科学家指出,人工神经网络将取代现代人工智能,但是有很多证据表明它们将结合到系统中,在这种系统中,每种方法都可以用来解决它所解决的问题[2]。
尽管深度学习最近取得了成功,但在解释复杂的高维数据流(如视觉、听觉和体感刺激)方面,哺乳动物的大脑仍然无与伦比。然而,大脑在处理不可靠、高维且通常不完整的数据的同时,功耗只有几瓦的底层计算原理仍然鲜为人知。在这项工作中,我们研究了特定功能如何从哺乳动物皮层中观察到的简单结构中产生,以及如何在非冯·诺依曼设备(如“神经形态硬件”)中利用这些功能。首先,我们表明,一组确定性的脉冲神经网络可以通过简单的局部学习规则来塑造,以执行基于采样的贝叶斯推理。这表明了一种编码方案,其中脉冲(或“动作电位”)表示受感官输入约束的后验分布样本,而无需任何随机性来源。其次,我们引入了一个自上而下的框架,其中使用最小作用原理和基于梯度的最小化来推导神经元和突触动力学。综合起来,神经突触动力学近似于实时误差反向传播,可映射到皮质网络的机械组件,其动力学可再次在所提出的框架内描述。所提出的模型缩小了定义明确的功能算法与其生物物理实现之间的差距,提高了我们对大脑可能采用的计算原理的理解。此外,此类模型可以自然地转化为模仿大脑高度并行的神经结构的硬件,有望实现强大的学习和推理算法的加速和节能,我们为物理模型系统“BrainScaleS-1”展示了这一点。