抽象准确的功率损失估计对于有效的电力系统操作和计划至关重要。传统方法依赖于假设,导致不准确。这项研究采用了多层馈送神经网络(MFNN)来开发一个模型,该模型估计电力线中的真实和反应性损失。负载流技术用于获得训练多种模型的变量。调整神经元数并比较其他模型的性能指标后,选择了所需的模型。使用MATPOPTOR对118个BUS IEEE测试网络进行建模。Levenberg-Marquardt反向传播算法对生成数据训练了该模型。结果表明,25-神经元模型表现最好,在1000个时期达到了最小平方误差(0.00047543)。相关系数显示20个神经元和25个神经元模型的值为0.9999。分析确定了25个基于训练的模型是预测功率损耗的最准确的模型。据观察,25-神经元模型以1000个时期的最高相关系数(0.99999)达到了最佳性能(0.99999)和最小平方误差(0.00047543)。这项研究证明了ANN在估计传输线中功率损失方面的有效性。推荐的25个基于基于Neuron的训练有素的模型提供了研究模型的最佳预测,从而提高了电力系统效率和计划。关键字:神经网络,神经元,负载流,Levenberg-Marquardt,Newton Raphson
主要关键词