血脑屏障(BBB)是最选择性的内皮杆之一。对健康和疾病的细胞,形态和生物学的理解对于开发可以从血液转移到大脑的治疗剂是必要的。体内模型为大脑采用的这些特征和运输机制提供了一些见解,但它们是将结果转化为临床外的强大平台。在本文中,我们提供了主要BBB特征的一般概述,并描述了各种模型,这些模型旨在复制与BBB相关的这种疾病和神经理性的病理。我们提出了几个关键参数和设计特征,可以用于设计血脑界面与生理相关的模型,并强调需要在测量该障碍的基本特性时达成共识。
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
在针对中枢神经系统 (CNS) 的药物开发中,发现能够穿过血脑屏障 (BBB) 进入大脑的化合物是最具挑战性的评估。几乎 98% 的小分子无法渗透 BBB,从而影响药物在 CNS 中的吸收、分布、代谢和排泄 (ADME) 机制,从而降低药物在 CNS 中的药代动力学。由于 CNS 通常无法进行许多复杂的程序,并且对数千种化合物进行体外渗透性研究可能非常费力,因此尝试通过实施机器学习 (ML) 方法来预测化合物通过 BBB 的渗透性。在这项工作中,使用 KNIME Analytics 平台,开发了 4 个预测模型,其中有 4 种 ML 算法,然后采用十倍交叉验证方法来预测外部验证集。在 4 种 ML 算法中,极端梯度提升 (XGBoost) 在 BBB 渗透性预测中表现出色,并被选为部署的预测模型。数据预处理和特征选择增强了模型的预测能力,整体来看,模型在训练集和外部验证集上分别达到了86.7%和88.5%的准确率以及0.843和0.927的AUC,证明了该模型具有较高的预测稳定性。
认知障碍是与年龄相关的合并症,与血脑屏障(BBB)泄漏是一个关键事件。BBB泄漏随着年龄的增长而增加,但这些机制仍未完全理解。在当前文章中,我们简要讨论了中性粒细胞外陷阱(NET)在与年龄相关的认知障碍增加中的作用。Netosis是一种过程中性粒细胞,释放了由DNA,组蛋白和抗菌蛋白组成的网络样结构。这些网是陷阱和杀死病原体的物理障碍,例如细菌,病毒和真菌。过多的网络形成与各种病理状况有关,例如血栓形成,癌症转移,炎症性疾病和自身免疫性疾病。最近的研究进一步表明,在鼠模型中,Netosis在中风和中性粒细胞耗尽期间在BBB泄漏中起关键作用,可以减弱阿尔茨海默氏病(AD)的病理学。在当前文章中,我们简要讨论了Netosis在BBB泄漏和与年龄有关的认知障碍中的推定作用。它应该简要总结文章的主要内容,并且可能包括文章的背景,目的,意义,方法和结论。
背景:神经胶质瘤是最常见的原发性恶性脑肿瘤,具有可怕的总体生存和高死亡率。临床治疗中最困难的挑战之一是,大多数药物几乎不会穿过血脑屏障(BBB)并在肿瘤部位实现有效的积累。因此,为了避免这一障碍,开发有效穿越BBB药物递送纳米壳的临床重要性非常重要。狂犬病病毒糖蛋白(RVG)是一种衍生肽,可以特异性结合与烟碱乙酰胆碱受体(NACHR)在BBB和胶质瘤细胞上广泛表达,以使狂犬病病毒入侵大脑。受到这一点的启发,RVG已被证明可以增强整个BBB的药物,促进渗透性,并进一步增强药物肿瘤的选择性和穿透性。方法:在这里,我们使用了从众所周知的RVG29进行重新分组的RVG15,以开发针对脑靶向的脂质体(RVG15-LIPO),以增强BBB的透气性和paclitaxel(PTX)的肿瘤特异性递送。制备紫杉醇 - 胆固醇复合物(PTX-CHO),然后积极地加载到脂质体中以获得高夹层效率(EE)和良好的稳定性。同时,对物理化学特性,体外和体内递送效率和治疗效应进行了彻底研究。结果:PTX-CHO-RVG15-LIPO的粒径和ZETA电位分别为128.15±1.63 nm和-15.55±0.78 mV。与游离PTX相比,PTX-CHO-RVG15-LIPO在HBMEC和C6细胞中表现出极好的靶向效率和安全性,并且在BBB的体外模型中的运输效率更好。此外,PTX-CHO-RVG15-LIPO可以明显改善PTX在大脑中的积累,然后根据基于体内成像分析的C6 Luc Orthotopic Glioma中的化学治疗药物渗透。体内抗肿瘤结果表明,PTX-CHO-RVG15-LIPO显着抑制了神经胶质瘤的生长和Metabasis,因此提高了具有不利影响的肿瘤小鼠的存活率。结论:我们的研究表明,由于BBB渗透和肿瘤靶向能力,RVG15是一种有前途的脑靶向特定配体。基于体外和体内出色的治疗效果,PTX-CHO-RVG15-LIPO被证明是PTX治疗临床上神经胶质瘤的潜在输送系统。关键字:神经胶质瘤,血液 - 脑屏障,RVG15,脂质体,紫杉醇
BBB 渗透性 — 针对中枢神经系统靶点的药物必须穿过血脑屏障 (BBB) 并可与脑组织结合。中枢神经系统靶向分子的理想 pK a 曲线在 5-10 范围内。碱性和两性离子分子是最佳渗透剂(或当需要将针对脑外的药物的中枢神经系统相关副作用降至最低时应避免的分子)。
有效绕过血脑屏障 (BBB) 是开发针对中枢神经系统的药物的主要障碍。虽然有几种方法可以确定小分子的 BBB 通透性,但平行人工膜通透性测定 (PAMPA) 是药物发现中最常见的测定方法之一,因为它具有稳健和高通量的特性。药物发现是一项长期且昂贵的事业,因此,任何简化此过程的进展都是有益的。在这项研究中,在 PAMPA-BBB 测定中筛选了来自 60 多个 NCATS 项目的约 2,000 种化合物,以开发定量结构-活性关系模型来预测小分子的 BBB 通透性。在分析了最先进和最新的机器学习方法之后,我们发现基于 RDKit 描述符作为附加特征的随机森林提供了最佳的训练平衡准确度 (0.70 ± 0.015),而使用 RDKit 描述符的图卷积神经网络的消息传递变体在前瞻性验证集上提供了最高的平衡准确度 (0.72)。最后,我们将体外 PAMPA-BBB 数据与啮齿动物体内脑渗透数据相关联,观察到 77% 的分类相关性,这表明使用 PAMPA-BBB 数据开发的模型可以预测体内脑渗透性。鉴于大多数先前研究依赖体外或体内数据来评估 BBB 渗透性,我们使用迄今为止最大的 PAMPA-BBB 数据集开发的模型提供了一种正交方法来估计小分子的 BBB 渗透性。我们将部分数据存入 PubChem 生物测定数据库 (AID: 1845228),并在 NCATS 开放数据 ADME 门户 (https://opendata.ncats.nih.gov/adme/) 上部署了性能最佳的模型。这些举措旨在为药物研发界提供宝贵的资源。
血脑屏障(BBB)是脑部药物输送的主要障碍,并限制了中枢神经系统疾病的治疗选择。为了避免BBB,我们引入了聚焦超声介导的鼻内脑药物递送(Fusin)。fusin利用鼻途径直接进行鼻脑对脑力管理,绕过BBB并最大程度地减少对主要器官的全身性暴露,例如心脏,肺,肝脏和肾脏[1]。它还使用集中在靶向大脑区域的经颅超声能量来诱导微气囊气蚀,从而增强了固定式脑内施用的脑固定剂在FUS靶向的大脑位置的运输。fusin是独一无二的,因为它可以实现非侵入性和局部脑部药物的递送,并且对其他主要器官的全身毒性最小化。本文的目的是为富辛递送到小鼠大脑提供详细的方案。
营养物质通过血脑验室(BBB)的各种转运蛋白(BBB)积极吸收。老年大脑缺乏特定的营养,包括doco-sahexaenoic酸(DHA)的水平降低与记忆和认知功能障碍有关。要补偿脑DHA的减少,必须通过运输载体将口服的DHA从Cir-Culting Acculting Acculting Flows运输到大脑,包括主要的辅助超家族域含有领域的蛋白2A(MFSD2A)和脂肪酸结合蛋白5(FABP5),这些蛋白5(Fabp5)具有运输和非遗传性DHA。尽管众所周知,BBB的完整性在衰老过程中发生了变化,但衰老对跨BBB的DHA转运的影响尚未完全阐明。我们使用原位跨心脑灌注技术使用了2-,8-,12个和24个月大的雄性C57BL/6小鼠,以评估[14 C] DHA的脑摄取,作为非层化形式。使用大鼠脑内皮细胞(RBEC)的原发性培养物来评估siRNA介导的MFSD2A敲低对[14 C] DHA的细胞摄取的影响。我们观察到,与2个月大的小鼠相比,脑摄取[14 C] DHA的脑摄取显着降低了[14 C] DHA的脑摄取显着降低,并且MFSD2A蛋白表达降低,与2个月大的小鼠相比,MFSD2A蛋白表达降低。然而,FABP5蛋白表达随着年龄的增长而上调。[14 C] DHA的脑摄取被过量未标记的DHA抑制。将MFSD2A siRNA转染到RBEC中,将MFSD2A蛋白表达水平降低了30%,并将[14 C] DHA的细胞摄取降低20%。这些结果表明MFSD2A参与了BBB的非固定DHA运输。因此,随着衰老而发生的DHA跨BBB的下降可能是由于年龄相关的MFSD2A而不是FabP5引起的。
抗体疗法具有强大且高度选择性的靶性结合,现在用于治疗各种疾病。然而,为了使它们用于治疗脑疾病,必须在血脑屏障(BBB)上递送,因为没有主动运输,只有大约0.01%的静脉注射剂量到达大脑。大脑递送可以通过能够结合自然转运蛋白(例如转铁蛋白受体(TFR))结合受体的BBB班车来完成。本论文研究了设计TFR结合班车的策略,以及如何增强抗体疗法的蛋白质表达。在论文I中,我们共享了我们更新的瞬态基因表达(TGE)协议,并开发了一个小规模版本,以影响测试许多条件的成本限制。对于两种方案,观察到蛋白质表达的巨大变化,促使未来研究研究其原因。在论文II中,我们研究了BBB中存在的硫酸乙二醇乙酰肝素(HS)是否可以改善大脑递送。我们的结果表明,BBB穿梭SCFV8D3不取决于所识别的HS结合位点,并且添加新的HS结合位点并不能增强交付。但是,由于HS的复杂性和异质性,需要进一步的研究。降低BBB班车的TFR亲和力已被证明可以增强高亲和力抗TFR抗体的治疗剂量的递送,例如,二色8D3抗体。在论文III中,我们将该策略应用于基于8d3(SCFV8D3)的单链片段变量(SCFV)。我们的亲和力突变体表现出降低的TFR亲和力,更长的血液半衰期和更高的脑浓度。使用我们的内部BBB反式分析,我们得出结论,脑浓度的增加可能是由于血液半衰期延长。在纸IV中,我们将TFR配体全转蛋白融合到部分二价RMAB158-SCFV8D3抗体的TFR结合臂上。我们的结果表明,TFR的结合从部分转移到完全二价,导致体外转胞细胞增多显着降低。没有二价结合的融合holotf的潜在跨胞菌病促进作用和/或抵消。但是,该策略仍然可以证明对单价TFR粘合剂有用。总而言之,在治疗剂量下,单价和低至中度亲和力可能是TFR介导的脑递送的有益结合特性。但是,是否有可能通过HS结合或HOLOTF融合来增强大脑递送,这需要进一步研究。