通常,各种模态会捕捉特定心理状态或活动的不同方面。虽然机器学习算法可以使用单一模态可靠地预测人类认知和行为的许多方面,但它们可以从多种模态的组合中受益。这就是混合 BCI 越来越受欢迎的原因。然而,组合多模态数据集中的特征并不总是那么简单。除了生成特征的方法外,还必须决定在分类过程中何时组合模态。在本研究中,我们将单模态 EEG 和眼动追踪对内部和外部注意力的分类与多模态方法在早期、中期和晚期融合中的应用进行了比较。在机会水平为 0.5 的二元数据集上,数据的后期融合实现了最高的分类准确率 0.609–0.675(95% 置信区间)。总体而言,结果表明,对于这些模态,中期或晚期融合方法比早期融合方法更合适。对观察到的趋势进行额外的验证将需要使用额外的数据集、替代特征生成机制、决策规则和神经网络设计。我们得出了一组在决定多模态注意力状态分类方法时需要考虑的前提。
摘要 理想的脑机接口 (BCI) 会根据用户的状态进行调整,以实现最佳的 BCI 性能。通常采用两种 BCI 调整方法:以用户为中心的设计 (UCD) 可满足个人用户的需求和要求。被动 BCI 可以通过在线分析电生理信号进行调整。尽管目标相似,但这些方法很少结合起来讨论。因此,我们为 2021 年第 8 届国际 BCI 会议组织了一个研讨会,讨论这两种方法的结合应用。在这里,我们通过更详细地讨论 UCD 对最终用户以及非最终用户的早期 BCI 开发的实用性来扩展研讨会。此外,我们探索了基于电生理学的在线用户状态适应,涉及意识和疼痛检测。将众多 BCI 用户状态适应方法集成到一个统一的过程中仍然具有挑战性。然而,进一步系统地积累有关评估和整合内部用户状态的具体知识对 BCI 优化具有巨大的潜力。
摘要 — 尽管不断进行研究,但基于脑机接口 (BCI) 的通信方法尚不是一种有效可靠的手段,严重残疾的患者可以依赖这种手段。迄今为止,大多数基于运动想象 (MI) 的 BCI 系统使用传统的频谱分析方法来提取判别特征并对相关的基于脑电图 (EEG) 的感觉运动节律 (SMR) 动态进行分类,这导致性能相对较低。在本研究中,我们调查了使用递归量化分析 (RQA) 和基于复杂网络理论图的特征提取方法作为提高 MI-BCI 性能的新方法的可行性。这些特征植根于混沌理论,探索了 MI 神经反应背后的非线性动力学,作为对 MI 进行分类的新信息维度。方法:将六名健康参与者执行 MI-Rest 任务时记录的 EEG 时间序列投射到多维相空间轨迹中,以构建相应的递归图 (RP)。从 RP 中提取了八个基于非线性图的 RQA 特征,然后通过 5 倍嵌套交叉验证程序与经典光谱特征进行比较,以使用线性支持向量机 (SVM) 分类器进行参数优化。结果:与经典特征相比,基于非线性图的 RQA 特征能够将 MI-BCI 的平均性能提高 5.8%。意义:这些发现表明,RQA 和复杂网络分析可以为 EEG 信号的非线性特征提供新的信息维度,从而提高 MI-BCI 性能。
摘要—本文研究了疼痛的存在对基于功能性近红外光谱 (fNIRS) 的脑机接口 (BCI) 中心算任务分类准确性的影响。在有和没有外部疼痛刺激的情况下执行两个心算任务时,从前额叶和运动皮质获得 fNIRS 记录。针对每个任务提取无痛和疼痛条件下 fNIRS 信号的各种频域参数并用作特征。使用二次核的支持向量机 (QSVM) 作为分类器。考虑了四种训练和测试分类器的场景:(1) 使用无痛数据进行训练和测试,(2) 使用低痛数据进行训练和测试,(3) 使用无痛数据进行训练并使用低痛数据进行测试,以及 (4) 使用低痛数据进行训练并使用无痛数据进行测试。结果表明,当使用疼痛时获得的数据对模型进行测试时,使用无痛数据训练的模型的分类准确率会显著降低。同样,当使用疼痛时获得的数据对模型进行训练但使用无痛数据进行测试时,准确率也会下降。这些结果强调了在为有需要的患者开发 BCI 时考虑疼痛引起的皮质活动变化的重要性。
摘要:2019年冠状病毒病的大流行紧急情况(COVID-19)阐明了需要创新的艾滋病,设备和辅助技术,使患有严重残疾的人能够过着日常生活。基于EEG的大脑计算机界面(BCI)可以带领具有重大健康挑战的人来改善其独立性,促进参与活动,从而增强整体幸福感和预防障碍。 此系统审查提供了基于脑电图的BCI的最新应用,尤其是使用电动机(MI)数据的BCIS,用于轮椅控制和移动。 它对自2010年以来进行的不同研究进行了彻底的检查,重点是算法分析,具有提取,特征选择和分类技术以及轮椅组件和性能评估。 本文提供的结果可以强调适用于严重残疾人的当前生物医学仪器的局限性,并将重点放在创新的研究主题上。基于EEG的大脑计算机界面(BCI)可以带领具有重大健康挑战的人来改善其独立性,促进参与活动,从而增强整体幸福感和预防障碍。此系统审查提供了基于脑电图的BCI的最新应用,尤其是使用电动机(MI)数据的BCIS,用于轮椅控制和移动。它对自2010年以来进行的不同研究进行了彻底的检查,重点是算法分析,具有提取,特征选择和分类技术以及轮椅组件和性能评估。本文提供的结果可以强调适用于严重残疾人的当前生物医学仪器的局限性,并将重点放在创新的研究主题上。
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
摘要 - 目的:通过使用单个校准数据,当前的最新方法显着提高了稳态诱发电位(SSVEP)的检测性能。但是,耗时的校准会限制了培训试验的数量,并可能导致视觉疲劳,从而削弱了单个培训数据的效率。为解决此问题,本研究提出了一种新型的受试者间和受试者内最大相关性(IISMC)方法,以通过采用跨主体间和受试者的相似性和可变性来增强SSVEP识别的鲁棒性。通过有效的转移学习,在相同任务下的类似经验在主题之间共享。方法:IISMC从自己和其他受试者中提取主题的特定信息和与任务相关的相似信息,通过最大化和内部对象内相关性来执行相同任务。多个弱分类器是由几个现有主题构建的,然后集成以通过平均加权来构建强晶格。最后,为目标识别获得了强大的融合预测指标。结果:在35个受试者的基准数据集上验证了所提出的框架,实验结果表明,IISMC获得的性能要比与TART与任务相关的成分分析(TRCA)的状态更好。明显:所提出的方法具有开发高速BCI的巨大潜力。
方法:我们之前的研究表明,一种新的声音想象 (SI) 任务,高音调隐蔽声音产生,对于发作检测场景非常有效,并且我们预计它比迄今为止使用的最常见的异步方法,即运动想象 (MI) 有几个优势:1) 直观;2) 对运动障碍人士,尤其是皮质运动区域受损人士有益;3) 与其他常见的自发认知状态没有显著重叠,使其更容易在日常生活中使用。将该方法与在线现实场景中的 MI 任务进行了比较,即在观看视频和阅读文本等活动期间。在我们的场景中,当屏幕上出现来自通讯程序的新消息提示时,要求正在观看视频(或阅读文本、浏览图像)的参与者通过分别针对每个实验条件执行 SI 或 MI 任务来打开消息。
摘要 — 脑机接口 (BCI) 是用户和系统之间强大的通信工具,它增强了人脑直接与环境通信和交互的能力。过去几十年来,神经科学和计算机科学的进步推动了 BCI 的令人振奋的发展,从而使 BCI 成为计算神经科学和智能领域的顶级跨学科研究领域。可穿戴传感设备、实时数据流、机器学习和深度学习方法等最新技术进步增加了人们对基于脑电图 (EEG) 的 BCI 在转化和医疗保健应用方面的兴趣。许多人受益于基于 EEG 的 BCI,它有助于在工作场所或家中单调的任务下持续监测认知状态的波动。在本研究中,我们调查了脑电信号传感技术和 BCI 应用中计算智能方法的最新文献,弥补了过去五年 (2015-2019) 系统总结中的空白。具体来说,我们首先回顾了 BCI 的现状及其重大障碍。然后,我们分别介绍了用于收集和清理 EEG 信号的先进信号传感和增强技术。此外,我们展示了最先进的计算智能技术,包括可解释的模糊模型、迁移学习、深度学习和组合,以在流行的应用中监控、维护或跟踪人类的认知状态和操作性能。最后,我们提供了几个受 BCI 启发的创新医疗保健应用,并讨论了基于 EEG 的 BCI 的一些未来研究方向。