摘要 近年来神经影像学研究明显证实了意识障碍(DoC)患者存在认知运动分离,这些发现加速了脑机接口(BCI)作为行为无反应患者的临床工具的发展。本文综述了BCI在DoC患者中的研究进展,并讨论了尚待解决的挑战。针对BCI在DoC患者中的实际应用,介绍了相关文献的四个方面:意识检测、辅助诊断、预后和康复。针对每个方面,分析了具有代表性的BCI系统的范式设计、脑信号处理方法和实验结果。此外,本文为DoC患者的BCI设计提供了指导,并讨论了未来研究的实际挑战。
摘要。目的。近年来,代码调制视觉诱发电位 (c-VEP) 已被视为能够提供非侵入式脑机接口 (BCI) 以实现可靠、高速通信的强大控制信号。它们在通信和控制方面的实用性反映在过去十年中相关文章的指数级增长中。本综述的目的是提供文献的全面概述,以了解自 c-VEP BCI 诞生 (1984 年) 至今 (2021 年) 以来的现有研究,并确定有希望的未来研究方向。方法。文献综述是根据系统评价和荟萃分析的首选报告项目 (PRISMA) 指南进行的。在评估期刊手稿、会议、书籍章节和非索引文档的资格后,共纳入 70 项研究。全面分析了基于 c-VEP 的 BCI 的主要特征和设计选择,包括刺激范式、信号处理、建模响应、应用等。主要结果。文献综述表明,最先进的基于 c-VEP 的 BCI 能够通过大量命令、高选择速度甚至无需校准来提供对系统的精确控制。总体而言,在实际设置中缺乏验证,尤其是针对残疾人群体的验证。未来的工作应侧重于开发应用于现实环境的自定进度的基于 c-VEP 的便携式 BCI,以利用 c-VEP 范式的独特优势。异步、无监督训练或代码优化等方面仍需要进一步研究和开发。意义。尽管基于 c-VEP 的 BCI 越来越受欢迎,但据我们所知,这是关于该主题的第一篇文献综述。除了联合讨论该领域的进展之外,还提出了一些未来的研究方向,以促进可靠的即插即用的基于 c-VEP 的 BCI 的开发。
在这项研究中,提出了信息瓶颈方法作为稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCI)的优化方法。信息瓶颈是一种信息理论优化方法,可在保留有意义的信息和压缩之间解决问题。它在机器学习中的主要实际应用是表示学习或特征提取。在这项研究中,我们使用信息瓶颈来为BCI找到最佳的分类规则。这是信息瓶颈的新颖应用。此方法特别适合BCIS,因为信息瓶颈优化了BCI传输的信息量。稳态视觉诱发的基于潜在的BCI经常使用非常简单的规则进行分类,例如选择与最大特征值相对应的类。我们称此分类为Arg Max分类器。这种方法不太可能是最佳的,在这项研究中,我们提出了一种专门设计的分类方法,以优化BCIS的性能度量。这种方法比标准机器学习方法具有优势,该方法旨在优化不同的措施。在两个实验的两个公开可用数据集上测试了所提出的算法的性能。我们使用标准功率频谱密度分析(PSDA)和规范相关分析(CCA)在一个数据集上的特征提取方法,并表明当前方法的表现优于该数据集的大多数相关研究。在第二个数据集上,我们使用与任务相关的组件分析(TRCA)方法,并证明所提出的方法在使用少量类时,根据信息传输率,标准ARG最大分类规则优于标准ARG最大分类规则。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。 该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。 它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。
脑机接口 (BCI) 的研究和开发持续增长。特别是,BCI 专利申请在最近几年呈指数级增长(Greenberg 等人,2021 年)。然而,对于不同类型的 BCI,情况有所不同:侵入式和非侵入式、主动和被动式,尤其是在健康用户的可能使用方面。侵入式 BCI 提供最佳性能,甚至可以提供对运动决策形成的早期阶段的访问,与通常的输入设备相比实现更快的交互(Mirabella 和 Lebedev,2017 年),但它们具有高风险和成本,并且不太可能在不久的将来供健康用户使用。现有的非侵入式 BCI 具有较低的带宽、速度和准确性,这就是为什么在脑/神经-计算机交互路线图中,只有被动式,而不是主动式 BCI 被视为健康用户的潜在技术(BNCI Horizon 2020, 2015;Brunner 等人,2015 年)。被动式 BCI 使用“不以自愿控制为目的的大脑活动”(Zander 和 Kothe,2011 年)。由于它们不要求用户的注意,因此其较低的交互速度是可以接受的(Current Research in Neuroadaptive Technology,2021 年)。相比之下,主动式 BCI 的用户通过有意识地控制自己的大脑活动来明确地控制应用程序(Zander 和 Kothe,2011 年)1。这些 BCI 必须与手动输入设备(键盘、鼠标、触摸屏)和新兴的非接触式替代品(基于语音、手势和凝视)竞争,因为它们在人机交互 (HCI) 中发挥着同样的作用(Lance 等人,2012 年;van Erp 等人,2012 年)。尽管已经宣布了一些尝试,希望通过推进大脑传感器技术来大幅提高非侵入式 BCI 的性能(最引人注目的是 Facebook 计划实现“直接从大脑”快速输入文本— Constine,2017 年),但脑电图 (EEG) 仍然是唯一广泛使用的技术,其性能仍然低于机电输入设备所提供的性能。例如,据报道,非侵入式异步“脑开关”(一种需要低假阳性率但只能检测一个离散命令的 BCI)的平均激活时间约为 1.5 秒(Zheng 等人,2022 年)。此外,虽然一些非医疗主动 BCI 使用完善的非侵入式 BCI 范例——运动想象 BCI、P300 BCI、稳态视觉诱发电位 (SSVEP) BCI 和代码调制视觉诱发电位 (c-VEP) BCI——但许多项目依赖于基于学习到的变化 EEG 节律的更不精确的控制(Nijholt,2019 年;Prpa 和 Pasquier,2019 年;Vasiljevic 和 de Miranda,2020 年)。由于性能低下,主动 BCI 仍然主要供无法使用其他输入的人(例如瘫痪者)负担得起。尽管如此,为健康人开发主动 BCI 的尝试仍在继续。在本意见中,我简要概述了它们目前开发的应用领域,然后尝试弄清楚这些尝试的动机以及近期的前景。
摘要——本研究的目的是通过使 EEG 置信度解码器最佳地适应群体组成来最大化群体决策表现。我们训练线性支持向量机从人类参与者的 EEG 活动中估计他们的决策信心。然后,我们使用加权多数规则组合个人决策来模拟不同规模和成员的群体。分配给组中每个参与者的权重是通过解决小维度、混合、整数线性规划问题来选择的,其中我们最大化训练集上的群体表现。因此,我们引入了优化的协作式脑机接口 (BCI),其中每个团队成员的决策都根据个人神经活动和群体组成进行加权。我们在 10 名人类参与者执行的人脸识别任务上验证了这种方法。结果表明,最佳协作式 BCI 比其他 BCI 显著提高了团队绩效,同时提高了群体内的公平性。这项研究为协作式 BCI 在以稳定团队为特征的现实场景中的实际应用铺平了道路,在这些场景中,优化单个群体的决策政策可能会带来团队动态的长期显著效益。
脑机接口 (BCI) 是神经病学和神经外科领域的一项重大技术进步,标志着自 1924 年脑电图问世以来的重大飞跃。这些接口有效地将中枢神经系统信号转换为外部设备的命令,为因中风、脊髓损伤和神经退行性疾病等多种神经系统疾病而导致严重沟通和运动障碍的患者带来革命性的好处。BCI 使这些人能够与周围环境进行交流和互动,利用他们的脑信号操作接口进行交流和环境控制。这项技术对于那些完全被困在里面的人来说尤其重要,在其他方法无法满足需求的情况下,它提供了一条沟通生命线。BCI 的优势是显而易见的,它为严重残疾患者提供了自主权并提高了生活质量。它们允许与各种设备和假肢直接互动,绕过受损或无功能的神经通路。然而,挑战依然存在,包括准确解读脑信号的复杂性、需要单独校准以及确保可靠的长期使用。此外,还需要考虑自主权、同意权以及对技术的依赖性等伦理问题。尽管存在这些挑战,BCI 仍代表着神经技术的革命性发展,有望改善患者的治疗效果并加深对脑机接口的理解。
摘要:脑机接口(BCI)在神经康复领域越来越受欢迎,而感觉运动节律(SMR)是一种可以被BCI捕捉和分析的脑振荡节律。先前的综述已经证明了BCI的有效性,但很少详细讨论BCI实验中采用的运动任务,以及反馈是否适合它们。我们重点研究了基于SMR的BCI中采用的运动任务以及相应的反馈,并在PubMed、Embase、Cochrane library、Web of Science和Scopus中搜索了文章,找到了442篇文章。经过一系列筛选,15项随机对照研究符合分析条件。我们发现运动想象(MI)或运动尝试(MA)是基于EEG的BCI试验中常见的实验范式。想象/尝试抓握和伸展手指是最常见的,并且有多关节运动,包括腕关节、肘关节和肩关节。在手抓握和伸展的MI或MA任务中存在各种类型的反馈。本体感觉以多种形式更频繁地使用。矫形器、机器人、外骨骼和功能性电刺激可以辅助瘫痪肢体运动,视觉反馈可以作为主要反馈或组合形式。然而,在恢复过程中,手部恢复存在许多瓶颈问题,例如弛缓性瘫痪或张开手指。在实践中,我们应该主要关注患者的困难,在机器人、FES或其他组合反馈的帮助下,为患者设计一个或多个运动任务,帮助他们完成抓握、手指伸展、拇指对握或其他动作。未来的研究应侧重于神经生理变化和功能改善,并进一步阐述运动功能恢复过程中神经生理的变化。
摘要。脑机接口旨在从用户的大脑活动中获取命令,以便将其传递到外部设备。为此,它可以检测到所谓的“主动”BCI 中的心理状态的自发变化,或“反应性”BCI 中大脑对外部刺激的反应的瞬时或持续变化。在后者中,用户通过感官通道(通常是视觉或听觉)感知外部刺激。当刺激持续且周期性时,大脑反应会达到可以相当容易检测到的振荡稳定状态。我们关注基于 EEG 的 BCI,其中周期性信号(机械或电)刺激用户皮肤。这种类型的刺激会引起体感系统的稳态响应,可以在记录的 EEG 中检测到。表征这种反应的振荡和锁相电压分量称为稳态体感诱发电位 (SSSEP)。研究表明,SSSEP 的幅度会受到特定心理任务的调节,例如当用户将注意力集中在或不集中在体感刺激上时,从而允许将这种变化转化为命令。实际上,基于 SSSEP 的 BCI 可以从直接的 EEG 信号分析技术中受益,就像反应式 BCI 一样,同时允许自定节奏的交互,就像主动式 BCI 一样。在本文中,我们对与利用 SSSEP 的基于 EEG 的 BCI 相关的科学文献进行了调查。首先,我们努力描述 SSSEP 的主要特征和允许调整刺激以最大化其幅度的校准技术。其次,我们介绍了作者实施的信号处理和数据分类算法,以便在基于 SSSEP 的 BCI 中详细说明命令,以及他们在用户实验中评估的分类性能。
在中枢神经系统病变后,为患有运动障碍的患者开发可靠的辅助设备仍然是非侵入性脑部计算机界面(BCIS)领域的主要挑战。这些方法主要由脑电图造影,并依靠高级信号处理和机器学习方法来提取运动活动的神经相关性。但是,尽管巨大的努力仍在进行,但它们作为有效临床工具的价值仍然有限。我们主张,一个相当被忽视的研究途径在于努力质疑传统上针对非侵入性运动BCIS的神经生理标记。我们提出了一种替代方法,该方法是基于非侵入性神经生理学的最新进展,特定主题的特征特征特征提取了通过(可能是磁脑摄影术 - 优化)的磁磁磁性术记录的感应活动爆发。这条道路有望克服现有限制的显着比例,并可以促进在康复协议中更广泛地采用在线BCI。