脑源性神经营养因子(BDNF)是神经营养蛋白家族的成员,在神经元保护和突触可塑性中起关键作用。BDNF的变化与各种病理条件有关,包括甲基苯丙胺(METH)成瘾,尽管Meth对BDNF表达的影响并不总是一致。我们先前已经证明了慢性甲基甲基化对大鼠脑中BDNF甲基化和表达的区域特异性作用。这项研究旨在确定慢性甲基施用对大鼠额叶皮层和海马中的免疫组织化学使用BDNF蛋白表达的影响。还确定了新颖的对象识别(NOR)作为认知功能的量度。雄性Sprague Dawley大鼠被施用甲基甲基或媒介物14天内的慢性升级剂量(0.1-4 mg/kg);在没有测试前一天的最后一天,还给予接受甲基苯酚的动物亚组。结果表明,海马CA1 BDNF蛋白在ED-BING大鼠中显着增加了72%,而其他海马区域和额叶皮层没有显着影响。甲基采集的动物在延迟24小时后也表现出赤字。显而易见的是,额外的暴饮暴食对BDNF蛋白或没有发现的显着影响。这一发现与我们先前的DNA甲基化降低和BDNF基因表达增加的结果一致。海马BDNF的增加可能反映出响应于谷氨酸升高而产生的保护因子的初始增加,从而导致神经退行性兴奋性。
结果:等位基因C和T的等位基因频率分别为72和28%。在主要的遗传模型下,观察到较小的言语等位基因的显着易感关联,其平均言语综合指数(OR = 2.216,p = 0.003,CI(95%)= 1.33–3.69)= 1.33–3.69),平均绩效指数较低(OR = 2.634,P <0.001,CI(CI(955))= 1.51(955) - = 1.51(951)。 IQ-4(OR = 3.159,P <0.001,CI(95%)= 1.873–5.328)。Met-Cleares的载体的体重指数增加(OR = 2.538,P <0.001,CI(95%)= 1.507–4.275),收缩压降低(OR = 2.051,P = 0.012,p = 0.012,CI(95%),CI(95%)= 1.202-3.502),或降低了尿症(或poi = 2. 2. 16,或= 2.16,ci(或= 2.16) (95%)= 1.278–3.657)。在隐性遗传模型下,还检测到智商和BP的几倍降低,并且还检测到T等位基因的存在,BMI的增加。
脑衍生的神经营养因子(BDNF)促进了发育过程中神经元的生存和生长。在成人神经系统中,BDNF对于多种生物学过程(例如记忆形成和食物摄入)中的突触功能很重要。此外,BDNF还与心血管系统的开发和维护有关。BDNF基因包括几个替代的未翻译5 0外显子和两个3 0 UTR的变体。尚未建立这些整个替代品对转换性的影响。使用报告基因并翻译核糖体的纯粹纯度分析,我们显示了普遍存在的BDNF 5 0 UTR,但不是3 0 UTR,对翻译产生抑制作用。但是,与以前的报告相反,我们没有检测到神经元活动对BDNF翻译的显着影响。通过敲击牛3 0 UTR的敲门式分析,牛生长激素3 0 UTR表明,BDNF 3 0 UTR是有效的BDNF mRNA和BDNF mRNA和BDNF蛋白在大脑中产生的,但在肺和心脏中的抑制作用。最后,我们表明bdnf mRNA富含大鼠脑突触剂体,其中含有转录本的外显子I检测到较高的富集。总而言之,这些结果在理解BDNF UTR的功能方面发现了两个新方面。首先,长BDNF 3 0 UTR不会抑制大脑中的BDNF表达。第二,外显子I - 衍生5 0 UTR在BDNF mRNA的亚细胞靶向中具有明显的作用。
简单总结:神经营养因子是帮助大脑生长和正常运作的生长因子。其中一种被称为脑源性神经营养因子 (BDNF)。BDNF 影响我们的体重以及我们学习和记忆事物的能力。有些老鼠的 BDNF 水平较低。已经培育出完全不表达 BDNF 的老鼠,但它们出生后不久就会死亡。因此,已经培育出只有正常一半 BDNF 水平的老鼠和一些脑细胞中 BDNF 水平非常低但其他脑细胞中 BDNF 水平正常的老鼠。此外,可以通过将这两种类型的老鼠一起繁殖来产生新的小鼠品系。这些新老鼠的大脑中 BDNF 非常少。它们是活的,但它们的体重比正常老鼠大,大脑也小。它们的行为也不同,尤其是在移动方式上。
大脑中脑衍生的神经营养因子(BDNF)的上调可以帮助预防和治疗抑郁症。 bdnf在各种周围组织以及大脑中合成,可以通过血脑屏障到达大脑。 因此,上调上调的食物可能有助于抑郁管理。 我们先前使用人肾脏腺癌ACHN细胞系具有白色foxtail小米(WFM)的BDNF-UP调节作用,该细胞系能够产生和分泌BDNF。 但是,尚不清楚其他foxtail小米品种是否也可以上调BDNF。 在此,我们检查了红色Foxtail小米(RFM)对体外和体内BDNF生产的影响。 RFM甲醇提取物在ACHN细胞的培养基中显着提高了BDNF水平,并且水平高于WFM处理的水平。 喂养含有20%RFM的标准饮食的大鼠的血清BDNF浓度明显高于对照中的饮食。 此外,RFM甲醇提取物的丁醇部分显着提高了ACHN细胞培养基中的BDNF水平,并在ACHN细胞中上调BDNF mRNA表达。 我们的结果表明,RFM具有具有BDNF诱导活性的食物材料。大脑中脑衍生的神经营养因子(BDNF)的上调可以帮助预防和治疗抑郁症。bdnf在各种周围组织以及大脑中合成,可以通过血脑屏障到达大脑。因此,上调上调的食物可能有助于抑郁管理。我们先前使用人肾脏腺癌ACHN细胞系具有白色foxtail小米(WFM)的BDNF-UP调节作用,该细胞系能够产生和分泌BDNF。但是,尚不清楚其他foxtail小米品种是否也可以上调BDNF。在此,我们检查了红色Foxtail小米(RFM)对体外和体内BDNF生产的影响。RFM甲醇提取物在ACHN细胞的培养基中显着提高了BDNF水平,并且水平高于WFM处理的水平。喂养含有20%RFM的标准饮食的大鼠的血清BDNF浓度明显高于对照中的饮食。此外,RFM甲醇提取物的丁醇部分显着提高了ACHN细胞培养基中的BDNF水平,并在ACHN细胞中上调BDNF mRNA表达。我们的结果表明,RFM具有具有BDNF诱导活性的食物材料。
小胶质细胞和脑衍生的神经营养因子(BDNF)对于表征关键发育时期的神经塑性至关重要。与内侧前额叶皮层(MPFC)相关的社会行为的经验依赖性发展 - 在小鼠的少年时期具有关键时期。但是,小胶质细胞和BDNF是否影响社会发展尚不清楚。在此,我们旨在阐明小胶质细胞衍生的BDNF对社会行为和MPFC发展的影响。在P21 - p35期间进行社会隔离的小鼠在小胶质细胞中增加了BDNF,并伴随着成年后的社交性降低。此外,过表达小胶质细胞BDNF的转基因小鼠在不同时间点使用多西环素进行调节 - 进行了行为,电生理和基因表达分析。在这些小鼠中,小胶质细胞BDNF的长期过表达受损的社交性和MPFC过度抑制性神经元电路活性。然而,尽管MPFC中的p21归一化社交性和电生理功能将强力霉素归一化,而尽管有提高的社交性,MPFC的后年龄(p45 - p50)的BDNF归一化(p45 - p50)并未归一化。为了评估BDNF在人类社交性中的可能作用,我们分析了人类巨噬细胞中不良的儿童经历与BDNF表达之间的关系,这是小胶质细胞的代理。结果表明,不良的童年经历与M2中的BDNF表达呈正相关,而不是M1巨噬细胞。总而言之,我们的研究证明了小胶质细胞对小鼠经验依赖性社会行为发展的影响,强调了其对MPFC功能成熟的特定影响,尤其是在青少年时期。此外,我们的结果提出了翻译的含义,这表明了巨噬细胞中的BDNF分泌与人类的童年经历之间的潜在联系。
摘要:脑衍生的神经营养因子(BDNF)是一种经过广泛研究的神经营养蛋白,用于发展大脑和保持成人脑功能。在成年海马中,BDNF对于维持成人神经发生至关重要。成年海马神经发生不仅参与记忆形成和学习能力,还参与了情绪调节和压力反应。因此,BDNF水平降低,伴随着低水平的成人神经发生,发生在认知功能受损的老年人和患有严重抑郁症患者的大脑中。因此,阐明维持海马BDNF水平的机制在生物学上和临床上很重要。已经揭示了周围组织的信号传导有助于调节跨血液 - 脑屏障的大脑中BDNF的表达。此外,最近的研究表明,神经元途径也可以是一种机制,外围组织向大脑发信号以调节BDNF表达。在这篇综述中,我们概述了通过外围信号传导调节中央BDNF表达的当前状态,并特别感兴趣通过迷走神经通过信号调节海马BDNF水平。最后,我们讨论了来自周围组织的信号传导与中央BDNF表达的年龄相关的控制之间的关系。
在大肠杆菌中表达重组人BDNF蛋白的过程需要由人类BDNF蛋白的129-247AA整合的重组DNA基因形成,该基因形成的是人类BDNF蛋白和N末端6xhis-Sumo-Sumo标记序列的表达载体,该表达载体是必不可少的DNA基因,该基因构成了dna基因,该基因构成了incorm incorm incorm inscrim inscorm inscorm inscrip以及用于克隆表达载体的转录和翻译的组件。分离和纯化后,获得了N端6xhis-Sumo标记的重组BDNF蛋白。该重组BDNF蛋白的特征是高纯度(> 90%,SDS-PAGE)。该BDNF蛋白沿凝胶延伸至大约30 kDa分子量的带。
在大肠杆菌中表达重组人BDNF蛋白的过程需要由人类BDNF蛋白的129-247AA整合的重组DNA基因形成,该基因形成的是人类BDNF蛋白和N末端6xhis-Sumo-Sumo标记序列的表达载体,该表达载体是必不可少的DNA基因,该基因构成了dna基因,该基因构成了incorm incorm incorm inscrim inscorm inscorm inscrip以及用于克隆表达载体的转录和翻译的组件。分离和纯化后,获得了N端6xhis-Sumo标记的重组BDNF蛋白。该重组BDNF蛋白的特征是高纯度(> 90%,SDS-PAGE)。该BDNF蛋白沿凝胶延伸至大约30 kDa分子量的带。
脑衍生的神经营养因子(BDNF)在整个胃肠道(GI)区域都高度表达,并且在调节肠道运动,分泌,感觉,免疫和粘膜完整性中起着关键作用。BDNF信号传导失调的失调与各种GI疾病的病理生理学有关,包括炎症性肠病,肠易激综合征,功能性消化不良和糖尿病性胃癌。本综述提供了肠道中BDNF定位,合成,受体和信号传导机制的全面概述。此外,还讨论了BDNF在控制肠蠕动,粘膜传输过程,内脏感觉,神经免疫相互作用,胃肠道粘膜愈合以及肠神经系统体内稳态中的生理和病理生理作用的当前证据。最后,探索了靶向BDNF治疗功能性GI疾病的治疗潜力。促进对BDNF生物学的知识和作用机制可能会导致基于利用这种神经营养蛋白的肠道营养作用的新疗法。
