枯草芽孢杆菌是一种革兰氏阳性细菌,属于多功能枯草芽孢杆菌基团,以及pumilus芽孢杆菌,扁豆芽孢杆菌和阿甘洛氏芽孢杆菌。1,2它表现出一种出色的遗传多样性,使其能够适应各种生态壁ni,范围从深海热液通风口到土壤和人类胃肠道。3,4其形成对恶劣条件有抵触的孢子的能力进一步有助于枯草芽孢杆菌在这些具有挑战性的环境中的生存。5为了在其特定栖息地中获得选择性优势,枯草芽孢杆菌还产生了广泛的生物活性代谢物库,包括聚酮化合物(PKS),非尖型体肽(NRPS),核糖体合成和后变性型eDi peptides(ripps)和terpials ant portials and terpent ant potport potport potpotirimicrip portimirimicrip。6,7该物种还用作农业中的生物防治药物,用于打击植物病原体并促进植物生长。6,8
研究需求和重要性:Calmette-Gu Erin(BCG)E无反应性的非肌肉侵入性膀胱癌(NMIBC)是一个有限的临床临床,具有有限的治疗选择。2022年12月,美国食品药品监督管理局批准了静脉内纳多芬烯烯烃VNCG(Nadofar-agene)用于治疗BCG-无反应的NMIBC用cis(CIS)(CIS)(CIS),有或没有毛状肿瘤。nadofaragene是一种未复制的腺病毒基因疗法,每3个月服用一次,将干扰素A 2B送到尿路上皮细胞。从第三阶段研究的5年随访中的结果提供了对安全性和效果的见解。我们发现的是:在CIS队列中,Kaplan-Meier E估计的57个月的高级复发E无生存率为13%(95%CI 6.9-21.5),在TA/T1队列中为33%(95%CI 19.5-46.6)。of Note,在顺式队列中,14/55(25%)患者在TA/T1队列中的17/35(49%)患者在随访的任何一结束或最后可用的随访中都有持续的反应(图)。第60个月的无囊切除术生存率为49%(95%CI 40.0-57.1):在CIS队列中为43%(95%CI 32.2-53.7),在TA/T1队列中为59%(95%CI 43.1-71.4)。这项研究是独一无二的12个月的研究活检及其保守的恢复方法,这仅适用于获得完全反应的患者。没有4年级或5级不良事件。
使用在冷冻条件下储存的质量控制(QC)接种物无菌接种储罐。此后,设定了用于介质温度,空气流量和搅拌速度的储罐运行参数,并孵育生物量生长。营养细胞最终将变得压力并开始散发,开始孢子形阶段。通过离心将孢子质量与生长培养基分开。将所得的浆料收集在干净的HDPE鼓或手提袋中。有QC检查应变身份,孢子计数和大肠菌群。使用干净的转移系统将浆液放入冻干托盘中,泥浆托盘在填充后被冷冻。冷冻浆液托盘的架子从冰箱中取出,并转移到冷冻干衣机上。材料批次记录在日志表上,并开始运行周期。
磷(P)是植物生长的关键营养素,但其摄取通常受到土壤因子和金属氧化物(例如铝(Al),铁),铁(Fe)和钙(CA)等土壤因子的阻碍,它们结合P并限制其可用性。磷酸盐溶解细菌(PSB)具有将不溶性P转换为可溶性形式的独特能力,从而促进了植物的生长。这项研究旨在评估巨型B芽孢杆菌B119(根际)和枯草芽孢杆菌B2084(内生芽孢杆菌)通过种子处理增强玉米产量,谷物P含量和酶活性的疗效。此外,我们研究了促进植物生长促进,与商业接种剂的兼容性以及这些菌株的玉米根粘附谱的各种机制。在巴西的两个实验区域,Sete Lagoas-MG和SantoantônioDeGoiás-Go中,在三个季节中实施了单次接种B119或B2084,而两种菌株的共同接种。除了控制外,所有治疗方法都根据情节建议接受P肥料。两种芽孢杆菌菌株均表现出与P动态相关的植物生长促进特性,包括磷酸盐溶解和矿化,产生吲哚 - 3-乙酸(IAA)类似分子,辅助分子,辅助物,外多糖(epos)(eps),eps),生物纤维和磷酸盐酶,以及无抗体和磷脂的含量。菌株B2084与B119相比显示出优质的玉米根粘附。在现场试验中,单次接种B119或B2084导致玉米谷物产量增加,Sete Lagoas的相对平均生产率分别为22%和16%,SantoAntônioDegoiás分别为6%和3%。与非接种对照相比,Sete Lagoas的共同接种更有效,Sete Lagoas的平均产量增加了24%,而SantoantônioDegoiás的平均产量增加了11%。在所有季节中,累积的谷物P含量与产量相关,而在圣托尼奥尼奥·德·戈伊斯(SantoAntôniodegoiás)共同接种后,根际的土壤P含量增加。这些发现补充了先前的研究工作,并导致了对玉米芽孢杆菌菌株配制的第一个巴西接种剂的验证和注册,从而有效地增强了P粒含量。
B.枯草厂已被欧洲食品安全局(EFSA)授予合格的安全性(QP),并具有缺乏细胞毒性活性的资格(EFSA Biohaz Panel等,2023年)。QP评估微生物的分类学身份,知识的相关体,潜在的安全问题和抗菌素耐药性。除了EFSA的认证外,枯草芽孢杆菌还根据美国环境保护署(EPA)法规具有1级豁免(EPA,1997年)。从枯草芽孢杆菌中得出的加工辅助工具先前已被美国FDA普遍认为是安全(GRA)的状态。食品添加剂联合专家委员会(JECFA)对枯草芽孢杆菌进行了技术审查,证实了其用作酶生产的安全菌株(Jecfa,2006年)。
β-六氨基胺单核苷酸(β -NMN)是一种生物活性物质,在人体中具有必不可少的功能。nmn可以转换为烟酰胺腺嘌呤二核苷酸(NAD +),这是一种参与NAD依赖性信号转导的辅酶,并充当代谢氧化还原反应的电子载体。当NAD +不足时,补充额外的NMN可以增加体内的NAD +含量以预防帕金森氏病(Lu等,2014; Martin等,2017),调节代谢,减少凋亡,并保持氧化还原状态(Alano等,2004)。此外,补充NMN可以防止DNA损伤和活性氧的积累(ROS)(Tarantini等,2019)。此外,NMN发挥神经保护作用并改善了认知和行为功能(Li等,2017; Johnson等,2018; Hosseini等,2019; Miao等,2020)。Recent studies have reported that NMN supplementation exerts therapeutic effects on chronic inflammation and retinal damage, promotes melanogenesis ( Chen et al., 2020; Liu et al., 2021; Lin et al., 2021b; Brito et al., 2022 ), and helps prevent skin photoaging, glaucoma, and cisplatin-induced ototoxicity ( Katayoshi et al., 2021; Petriti等人,2021年;
摘要。淀粉酶酶由于其多种应用而在各种行业中使用。在这项研究中,主要在淀粉琼脂培养基上筛选了来自土壤样品的细菌,以通过检测突出的透明区域鉴定淀粉酶产生。在本研究中使用了五个土壤样品,即面包店(A-1),甘蔗汁点(A-2),Lichi Chinesis Garden土壤(A-3),稻田(A-4)和糖工业废物(A-5)。在淀粉酶产生的阳性中被发现阳性。在生产介质上进一步筛选了菌株。与其他菌株相比,N-1细菌菌株显示出更高的酶活性(92.21±17 IU/mL),因此被选择进行进一步工作。从16S rRNA分析中将菌株鉴定为芽孢杆菌基型。通过一次技术在一个因素中优化各种参数来增强酶的产生。农业工业废料稻油被用作底物。酶的最佳温度为35°C,pH 5.5和2%(w/v)的底物浓度。使用十二烷基聚丙烯酰胺凝胶电泳的定性检测表明,酶的分子量为35 kDa。这表明该酶需要中等温度和中性pH值才能显示出最大的活性。关键字:淀粉酶,16S rRNA基因,芽孢杆菌杆菌,DNS,PCR
简单摘要:进行了实验,以研究枯草芽孢杆菌对不同钾水平下黄瓜幼苗的生长和光合系统的影响。用“ Xinjin 4”作为测试材料进行了锅实验,并进行了两因素实验。这两个因素是不同浓度的钾离子和枯草芽孢杆菌治疗。研究了不同处理对黄瓜幼苗生长,光合特征,根形态和叶绿素荧光参数的影响。结果表明,当钾离子的浓度为0.2 g/锅时,枯草芽孢杆菌对黄瓜幼苗生长和叶片光合作用的影响最大。这项研究为进一步利用枯草芽孢杆菌制造微生物肥料并提高了黄瓜的营养吸收效率以促进农业的发展。
基于植物生长促进细菌的固体和液体制剂枯草芽孢杆菌BS006被设计为蔬菜苗圃生产的生物接种剂。考虑到从生产过程到土壤应用的微生物生存的重要性,在20、30和40°C的十二个月内评估了每个配方中的孢子生存力(CFU)。在评估的三个温度水平下,固体和液体配方的生存率分别高于85和90%。将细菌生物学活性评估为苗圃中的生菜,西兰花和番茄的植物生长促进。在播种和播种后21天,以三个浓度(1x10 7,5x10 7,1x10 8 cfu/ml)施加制剂。根和空中长度和干重是评估响应变量。观察到了积极的效果,特别是在1x10 8孢子/ml的液体配方中,显示了根和空中部位的最长长度,并且根和叶面部分中的干重值最高。关于内生芽孢杆菌,枯草芽孢杆菌定植的根,茎和叶,达到8x10 2至1x10 5 cfu/g之间的浓度。
Dacheng Wang, 1 Lirong Wei, 1 Jinbiao Ma, 1 Yingqiao Wan, 1 Keyi Huang, 1 Yiqiong Sun, 1 Huili Wen, 4 Zhipeng Chen, 4 Zijie Li, 1 Dongli Yu, 2 Haitao Cui, 3 Jingni Wu, 1 Yufeng Wu, 4 Sun Tae Kim, 5 Jing Zhao, 1 Jane E. Parker,6 Kenichi Tsuda,7岁, * Chunhao Jiang,1, *和Yiming Wang 1,8, * 1植物病理学系,农作物疾病综合管理和害虫综合管理的主要实验室,Nanjing农业大学教育部Nanjing 210095,NANJING 210095 02115, USA 3 Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China 4 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China 5 Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea 6 Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany 7 State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China 8 Lead contact *Correspondence: tsuda@mail.hzau.edu.cn(K.T.),chjiang@njau.edu.cn(C.J.),ymwang@njau.edu.cn(y.w。)https://doi.org/10.1016/j.celrep.2024.113985