海马体和前额叶皮层 (PFC) 之间的相互作用在人类空间导航和情景记忆中都发挥着重要作用,但这些区域之间跨任务域的潜在信息因果流尚不清楚。在这里,我们使用颅内脑电图记录和光谱分辨相位转移熵来研究两种不同的虚拟空间导航和记忆编码/回忆任务中的信息流,并检查信息流模式在空间和言语记忆域中的可复制性。信息理论分析表明,从海马体到侧 PFC 的因果信息流比反向更高。至关重要的是,在两种空间导航任务的记忆编码和回忆期间观察到了不对称的信息流模式。进一步的分析揭示了相互作用的频率特异性,其特征是在 delta-theta 波段 (0.5-8 Hz) 中,从海马体到 PFC 的自下而上的信息流更大;相反,在 beta 波段 (12-30 Hz) 中,从 PFC 到海马体的自上而下的信息流更强。贝叶斯分析表明,两个空间导航任务(贝叶斯因子 > 5.46e + 3)以及跨空间和言语记忆域的任务(贝叶斯因子 > 7.32e + 8)之间具有高度的可重复性。我们的研究结果确定了人类大脑在记忆形成过程中参与的独立于域且可复制的频率相关反馈回路。
本论文提出了一种用于平台导航的和积推理算法,称为多模态 iSAM(增量平滑和映射)。常见的仅高斯似然具有限制性,需要复杂的前端流程来处理非高斯测量。相反,我们的方法允许前端推迟使用非高斯测量模型的歧义。我们保留了前身 iSAM2 最大乘积算法 [Kaess et al., IJRR 2012] 的非循环贝叶斯树(和增量更新策略)。该方法在贝叶斯(连接)树上传播连续信念,这是非参数因子图的有效符号重构,并渐近地近似底层 Chapman-Kolmogorov 方程。我们的方法以最小的近似误差跟踪所有变量边际后验中的主导模式,同时抑制几乎所有低似然模式(以非永久方式)。与现有的惯性导航保持一致,我们提出了一种新颖的、连续时间的、可追溯校准的惯性里程计残差函数,使用预积分将纯惯性传感器测量无缝地合并到因子图中。我们围绕因子图(使用饥饿图数据库)集中将导航元素分离成一个流程生态系统。其中包括实际示例,例如如何推断模糊环路闭合的多模态边际后验信念估计;原始波束形成声学测量;或常规参数似然等。
简介:存在许多不同的方法来识别心脏病。本文讨论了使用机器学习算法来预测心脏病风险的心脏病预测应用。该应用程序旨在为用户提供预测,帮助他们评估心脏病风险并就其健康做出明智的决定。方法:心脏病预测应用利用KAG GLE的“心脏病UCI”数据集。数据经过预处理,转换并分成70%的培训和30%的测试集。使用三种机器学习算法(即支持向量机(SVM),天真的贝叶斯和K-Nearest邻居(K-NN)。结果:K-NN的准确率达到81.82%,幼稚的贝叶斯达到83.44%,而SVM的准确率达到了84.74%的最高准确率。结果表明SVM的表现优于其他算法。然后开发了一个AP贴合以实现SVM预测模型。该应用程序具有各种用户接口,包括用于用户注册和身份验证的注册和登录页面。用户可以输入其医疗信息,该应用程序使用训练有素的SVM模型来预测其心脏病的风险。结果以百分比的风险提交给用户,并伴随着适当的健康建议。结论:该应用程序可以帮助用户评估心脏病风险并提供建议,以最大程度地减少心脏病风险。马来西亚医学与健康科学杂志(2024)20(SUPP10):10-17。 doi:10.47836/mjmhs.20.s10.2马来西亚医学与健康科学杂志(2024)20(SUPP10):10-17。 doi:10.47836/mjmhs.20.s10.2
伦理学的伦理学定量研究引入R;统计分布理论;贝叶斯定理;恢复矩阵代数用于统计分析;线性回归分析和高斯马尔可夫定理;使用非金属(虚拟)变量;逻辑回归;推论和假设检验;时间趋势分析社会科学的定性研究;科学哲学;定性研究的关键方面;扎根理论;定性研究方法(观察,访谈,焦点小组);在课程成功完成后,定性研究学习成果的应用,学生…… - 可以描述实证研究中的道德规范。- 解释统计分布理论的概念并了解贝叶斯定理。- 理解线性回归和物流回归的理论基础。- 可以使用OLS准备数据进行分析并进行实证研究。- 能够生成和检验假设(t检验,F检验和ANOVA)并解释P值。- 能够对沿农业食品链的典型时间序列数据进行趋势分析。- 将能够解释统计软件输出。- 可以解释社会科学中的主要认识论方法,不同的科学推理方式以及批判理性主义和实证主义争议的基本假设。- 能够描述定性研究的关键方面和质量标准,以及它如何与定量研究区分开。- 可以总结不同的定性研究方法。- 将能够解释,反思研究结果并提出这些结果。2。- 将能够在小组中讨论一个研究主题,开发定性调查并采用扎根的理论方法来分析访谈数据。先决条件
• 展示统计推断如何从概率论的第一原理中产生。 • 理解推理的基本原理:充分性、似然性、辅助性、等方差。 • 理解有限样本和推理程序渐近效率的概念。 • 展示对参数和非参数 delta 方法、渐近正态性、Edgeworth 展开和鞍点方法的掌握。 • 估计感兴趣的关键总体参数,检验关于它们的假设并构建置信区域。 • 在实践中使用参数、非参数、贝叶斯和稳健推理。 • 使用计算机软件包为最常见的推理程序和计算机密集型计算(如引导和稳健估计)生成输出。
2算法185 2.1属性重要性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。185 2.2协会规则。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。190 2.3决策树。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。196 2.4期望最大化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。206 2.5明确的语义分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。219 2.6指数平滑。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>225 2.7广义线性模型。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2330 2.8 k均值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>241 2.9幼稚的贝叶斯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。249 2.10非负矩阵分解。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。259 2.11神经网络。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。267 2.12 O-Cluster。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 276 2.13随机森林。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 287 2.14单数值分解。 。 。 。 。 。 。 。 。267 2.12 O-Cluster。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。276 2.13随机森林。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。287 2.14单数值分解。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>294 2.15支持向量机。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>303 2.16 XGBOOST。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>303 2.16 XGBOOST。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>312 div>
现代文明中科学技术的快速增长导致机械和设备的规模,复杂性和自动化的增加。现代工业生产的两个最重要方面是问题识别和机械状况监测。通过有效的状况监测使早期问题检测成为可能,这在考虑到生产效率,操作可靠性,维护成本和停机时间等变量时至关重要。研究问题的识别和机械的健康监测具有实际意义。为了进行设备监控和故障诊断的目的,记录了有关设备的温度,振动,噪声水平和润滑状态的信息。之后,该信息被用来确定该问题的主要来源,并采取补救措施。条件监视系统的核心元素是故障预测,功能提取和问题诊断。特征提取和故障诊断对于正常检测,问题定位和失败严重性预测至关重要。本文包括故障诊断和计算智能在状态监控和故障检测中的应用,本文还介绍了一种使用机器学习(ML)技术进行设备状态监测的方法。流行的机器学习(ML)分类方法,例如随机森林(RF),随机树(RT),天真贝叶斯(NB),XG Boost(XGB)和Logistic Recression(LR),用于组装。紧迫需要提高机器的可靠性并减少由于机器故障而导致的生产损失的可能性,这是对机器状况监测的越来越重视的原因。关键字:故障预测,机器学习,天真的贝叶斯,生产,随机森林,随机树,意外的停机时间。
摘要网络设备的增长强调了对保护数字系统免于不断发展的网络威胁的高级入侵检测(IDS)工具的渴望。传统IDS系统通常很难适应威胁环境,因为它们依赖于预定义的签名列表。本研究提出了一种新的方法,该方法将Wireshark(一种广泛使用的网络数据包分析工具)与用于入侵检测的高级机器学习。我们的系统利用Wireshark的数据摄入和分析功能以及算法(例如梯度提升,天真的bay和随机森林),在检测网络流量数据吞吐量中的缺陷和潜在侵入方面提供了更高的准确性。它为包括DDOS攻击在内的各种网络威胁提供了有效的保护,并符合监管标准。这项研究代表了网络安全改革的重大进步,使组织能够实时减轻威胁,并在持续的数字环境中支持协作防御。一个称为入侵检测系统(IDS)的系统可观察恶意交易的网络流量,并在观察到时立即发送警报。是对网络或系统检查恶意活动或违反政策的软件。每种非法活动或违规通常使用SIEM系统中心记录或通知给药。IDS监视网络或系统以进行恶意活动,并保护计算机网络免受来自包括内部人员在内的用户的未经授权访问的访问。入侵检测器学习任务是建立一个预测模型(即分类器)能够区分“不良连接”(入侵/攻击)和“好(正常)连接”。关键字:DDOS攻击,ID,入侵检测,机器学习,恶意攻击,幼稚 - 绑架,随机森林
“浅层”模型:逻辑回归[16、39、41、45、68、86、106、143],线性回归[28、37、101、111],广义加性模型∗(GAM)[1、13、39、43、49、128、135],决策树 / 随机森林[29、45、54、55、86、92、97、137、144、155],支持向量机(SVM)[41、80、81、86、94、114、147、 152]、贝叶斯决策列表[82]、K最近邻[77]、浅层(1至2层)神经网络[45,106]、朴素贝叶斯[125]、矩阵分解[78]