Loading...
机构名称:
¥ 1.0

现代文明中科学技术的快速增长导致机械和设备的规模,复杂性和自动化的增加。现代工业生产的两个最重要方面是问题识别和机械状况监测。通过有效的状况监测使早期问题检测成为可能,这在考虑到生产效率,操作可靠性,维护成本和停机时间等变量时至关重要。研究问题的识别和机械的健康监测具有实际意义。为了进行设备监控和故障诊断的目的,记录了有关设备的温度,振动,噪声水平和润滑状态的信息。之后,该信息被用来确定该问题的主要来源,并采取补救措施。条件监视系统的核心元素是故障预测,功能提取和问题诊断。特征提取和故障诊断对于正常检测,问题定位和失败严重性预测至关重要。本文包括故障诊断和计算智能在状态监控和故障检测中的应用,本文还介绍了一种使用机器学习(ML)技术进行设备状态监测的方法。流行的机器学习(ML)分类方法,例如随机森林(RF),随机树(RT),天真贝叶斯(NB),XG Boost(XGB)和Logistic Recression(LR),用于组装。紧迫需要提高机器的可靠性并减少由于机器故障而导致的生产损失的可能性,这是对机器状况监测的越来越重视的原因。关键字:故障预测,机器学习,天真的贝叶斯,生产,随机森林,随机树,意外的停机时间。

设备使用机器学习的设备健康监测...

设备使用机器学习的设备健康监测...PDF文件第1页

设备使用机器学习的设备健康监测...PDF文件第2页

设备使用机器学习的设备健康监测...PDF文件第3页

设备使用机器学习的设备健康监测...PDF文件第4页

设备使用机器学习的设备健康监测...PDF文件第5页

相关文件推荐

2021 年
¥2.0
2025 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2025 年
¥2.0
2020 年
¥1.0
2024 年
¥14.0
2025 年
¥1.0
2021 年
¥4.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0