摘要 传统的损伤检测技术正逐渐被最先进的智能监测和决策解决方案所取代。结构健康监测 (SHM) 系统中的近实时和在线损伤评估是一种有希望的过渡,可以弥合过去应用效率低下与未来新兴技术之间的差距。在智能城市、物联网 (IoT) 和大数据分析时代,数据驱动的民用基础设施监测框架的复杂性尚未完全成熟。因此,机器学习 (ML) 算法提供了必要的工具来增强 SHM 系统的功能并为过去的挑战提供智能解决方案。本文旨在阐明和回顾现代 SHM 系统中涉及的 ML 前沿。本文提供了 ML 管道的详细分析,并在补充表格和图中总结了需求量大的方法和算法。通过物联网范式连接基础设施中关键信息的无处不在的感知和大数据处理是 SHM 系统的未来。随着这些数字技术的进步,考虑到下一代 SHM 和 ML 的结合,本文详细讨论了 (1) 移动设备辅助、(2) 无人机、(3) 虚拟/增强现实和 (4) 数字孪生领域的最新突破。最后,本文探讨了 SHM-ML 结合的当前和未来挑战以及未解决的研究问题