1S 2816 NIOHI PREM MISHRA 女 将军 72.87 71.63 72.25 16 615 SHRUTINARENDRAJADHAV 女 SC 70.37 69.87 70.12 11 \ 440 RffiJEN RAFE RAFERALE 将军 65.88 67.38 66.63 18 3665 FERJN SHANTILAL PATEL 女 将军 56 58.62 57.31 19 3478 PRrYANKA RAMESH RAMES .. 女 将军.RAL 52.62.SSS 54.06.
背景:腹膜后脂肪肉瘤(RLP)是一种罕见的恶性肿瘤,除了手术干预外没有有效治疗。识别新颖的治疗靶标和预后标记对于改善预后至关重要。成纤维细胞生长因子受体底物2(FRS2)位于染色体12q13-15上的MDM2附近,在脂肪肉瘤中具有生物学作用和预后价值,这仍然可以充分探索。方法:使用Bioinformatics工具用于使用公共数据库(例如GTEX,TCGA和CBIOPORTAL)分析各种恶性肿瘤的FRS2的差异表达。在肉瘤(SARC)中,临床病理学特征,预后结局,共表达的基因,肿瘤浸润的免疫细胞水平,免疫刺激剂,主要的组织相容性复合物(MHC)分子和免疫化学分子和免疫化学因素是从多个公共数据库中提取的。肿瘤标本,并通过免疫组织化学评估FRS2表达。结果:发现大多数癌症中发现FRS2被上调和扩增。GEPIA 2分析显示,跨癌症类型,尤其是肉瘤(SARC)的FRS2 mRNA表达显着差异。SARC中的FRS2表达较低与改善的总生存期(OS)和无病生存期(DFS)相关。FRS2可能会影响肿瘤免疫微环境,抑制免疫细胞浸润并促进免疫逃避。在我们的RLPS队列中,在58.53%(48/82)的病例中观察到FRS2过表达,并且与年龄相关(p = 0.009)。结论:FRS2可以作为潜在的预后生物标志物和治疗性癌基因靶标。高FRS2表达与较差的OS和DFS相关(分别为p = 0.049和p <0.001),多变量分析证实了FRS2是独立的预后因素。此外,FRS2可以在SARC中的免疫细胞浸润中发挥作用,并代表了癌症治疗的有希望的免疫治疗靶标。
本独立的教科书涵盖了进化生物学中序列分析的基本方面,包括序列比对,系统发育重建和融合模拟。它通过一系列超过400个计算机问题来解决这些方面,从基础到研究级别,再到完成学习。学生在科学数十年的相同计算环境中解决了问题 - UNIX命令行。这在PC的所有三个主要操作系统上都可用:Microsoft Windows,Mac-OSX和Linux。要使用此功能强大的系统学习,学生通过应用通用工具,生物信息学软件以及专门为本课程编写的40多个程序来分析样本序列数据。包括所有问题的解决方案,这本书是自学的理想之选。问题分为以引言和新概念和程序列表为首的部分。通过使用实用计算来探索进化概念和序列数据,该书使读者能够解决自己的计算问题。
学生必须在每个五个类别中完成至少一门课程。强烈建议使用Station 211,Stat 301,STAT 302或Stat 303的Stat 211,STAT 301,STAT 301,STAT 301,STAT 211,STAT 211,强烈建议使用统计课程。鼓励通过491个课程进行独立的研究经验。
5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。 C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。C.M.)2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。禽病。41(4),329-35。[2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。和Lipman,D.J。)1990(基本本地对齐搜索工具。J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Mol。生物。215(3),403-10。[3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。[3] Ansori,A.N。和Kharisma,V.D。)2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。eksakta:J。Sci。数据肛门。20(1),14-20。[4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I.(2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。PLOS ONE 11(9),E0162484。[5] Brown,V.R。和Bevins,S.N。(2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。兽医。res。48(1),1-5。[6] De Leeuw,O。和Peeters,B。(1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Virol。80(1),131-6。[7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H.病毒学531,203-18。2017。(2019)2018年至2019年加利福尼亚疫情及其相关病毒在年轻鸡和相关病毒中的致病性和传播。[8] Dimitrov,K.M。,Afonso,C.L.,Yu,Q。和Miller,P.J。纽卡斯尔疾病疫苗 -
本期特刊旨在探索和展示神经形态和生物启发的计算的尖端研究和发展。此问题将集中在这些迅速发展的领域的最新进步,挑战和未来方向上。我们欢迎原始的研究文章,全面评论和简短的沟通来解决神经形态和生物启发的计算的各个方面,包括但不限于: - 神经形态硬件设计和实现 - 跨越神经网络及其应用 - 生物启动的算法和优化技术,并分化了机器计算机和机器的计算机<
摘要背景:子宫子宫内膜癌(UCEC)被称为世界第六大癌症。生物信息学和深度学习的进步提供了筛查大规模基因组数据并发现指示疾病状态的潜在生物标志物的两种工具。这项研究旨在研究使用生物信息学和机器学习算法鉴定子宫诊断和预后的重要基因。方法:分析UECE患者的RNA表达谱,使用深度学习技术鉴定差异表达的基因(DEG)。预后生物标志物。此外,彻底检查了分子途径,蛋白质 - 蛋白质相互作用(PPI)网络,DEG的共表达模式及其与临床数据的关联。最终,通过基于深度学习的分析来确定诊断标记。结果:根据我们的发现,MEX3B,CTRP2(C1QTNF2)和AASS是UCEC的新生物标志物。评估指标证明了深度学习模型的功效(DNN)功效,最小平均平方误差(MSE)为5.1096067E-5,而根平方误差(RMSE)为0.007,表示准确的预测。0.99的R平方值强调了该模型解释数据中差异的很大一部分的能力。因此,该模型在曲线(AUC)下达到了一个完美的区域,表示特殊的歧视能力,精度率为97%。因此,确定新的UCEC生物标志物有望有效护理,改善预后和早期诊断。结论:GDCA数据库和深度学习算法确定了3个重要基因-MEX3B,CTRP2(C1QTNF2)和AASS,是UCEC的潜在诊断生物标志物。关键词:子宫语料库子宫内膜癌,深度学习,生物标志物,生物信息学分析,UCEC利益冲突:无宣布的资金:这项研究得到了Shahid Beheshti医学科学大学的资助和支持。*这项工作已根据CC BY-NC-SA 4.0许可发布。版权所有©伊朗医学科学大学引用本文的引用:Valizadeh Laktarashi H,Rahimi M,Rahimi M,Abrishamifar K,Mahmoudabadi A,Nazari E.使用生物学信息和机器学习对子宫中重要的诊断基因的鉴定。Med J Islam Repub伊朗。2025(1月6日); 39:4。 https://doi.org/10.47176/mjiri.39.4
背景:炎症性肠病(IBD)是一种影响肠道的持续性,非特异性炎症。牛皮癣是皮肤的长期炎症性疾病。IBD和牛皮癣之间存在合并症的相关性,但是合并症的特定发病机理尚不清楚。材料和方法:在这项研究中,我们分析了来自基因表达综合(GEO)数据库的数据集,并通过差异表达分析和加权基因共表达网络分析(WGCNA)鉴定了IBD和牛皮癣的共享基因。然后,应用三种机器学习算法来识别共享的诊断基因。接下来,用ROC曲线评估了共享诊断基因的验证,并确定了AUC。随后,进行了单个样品基因集富集分析(SSGSEA)和免疫浸润分析。此外,我们在药物签名数据库(DSIGDB)中获得了潜在的药物,例如Coremine数据库中的7种传统中药,这可能会对IBD和牛皮癣的合并症具有治疗作用。最后,我们通过RT-PCR,Western印迹和免疫组织化学(IHC)方法证实了结肠炎和牛皮癣小鼠组织中共有诊断基因的表达。结果:结果表明,AQP9的两种疾病具有最高的诊断值。AQP9的AUC值为UC的AUC值为93.681%,CD的AUC值为89.629%,在内部验证数据集中,牛皮癣的AUC值为78.689%。在外部验证数据集中,AQP9的AUC值为UC的AUC值为90.394%,CD的AUC值为93.909%,牛皮癣的AUC值为90.909%,为82.906%。免疫浸润分析和SSGSEA表明,AQP9可能通过参与NF-kappab信号通路并调节免疫细胞分化来影响IBD和牛皮癣的疾病过程。此外,与对照组相比,AQP9的表达水平始终验证,在IBD中显示上调和牛皮癣下调。结论:这项研究揭示了IBD和牛皮癣合并症的共享诊断基因和潜在机制,为探索合并症机制和治疗目标的未来研究提供了新的方向。