最近发现和随后的CRISPR – Cas9(群集定期间隔短的短质体重复杂种蛋白9)平台作为精确的基因组编辑工具已转移了生物医学。由于这些基于CRISPR的工具已经成熟,因此基因编辑过程的多个阶段和人类细胞和组织的生物工程已经发展。在这里,我们重点介绍了生物材料和基因组编辑技术开发的最新交集。这些相互作用包括大分子的递送,在其中利用生物材料平台可以使基因组工程工具的非病毒递送到体内细胞和组织。此外,与基因组工程工具结合使用时,工程类似于本机的生物材料形式可促进人类发育和疾病的复杂建模。在这些领域的生物材料平台的更深入范围可能在实现基因编辑以治疗人类疾病的基因编辑方面发挥重要作用。
已经开发了许多用于生物医学应用的材料,许多研究人员仍然旨在开发比当前使用的生物材料更好的生物材料。为了开发新的生物材料,有两种基本方法:一种是由单个化学物质制成的纯生物材料的发展,另一种是由多种不同物质制成的复合生物材料。可以通过与另一种材料涂层材料来实现后一种方法。在腐蚀和兼容性方面,这种方法似乎具有一些优势。例如,1)具有抗腐蚀和良好兼容材料的薄外套将转化具有独特且有利的物理特性的腐蚀底物变成一种新的抗腐蚀复合材料。因此,抗腐蚀涂料材料的发展可能导致许多新的复合材料,2)如今,很难开发具有抗腐蚀材料的纯材料。候选涂层材料之一是钻石样碳(DLC)。在本文中,作者审查了DLC是否具有抗腐蚀,并探讨了医学领域中DLC应用的物理化学特性与生产参数之间的关系。
肽亚单位疫苗通过降低脱靶反应风险和提高诱导适应性免疫反应的特异性来提高安全性。然而,大多数可溶性肽的免疫原性通常不足以产生强大而持久的免疫力。已经开发了许多用于肽抗原的生物材料和运载工具,以在保持特异性的同时改善免疫反应。肽纳米簇 (PNC) 是一种亚单位肽疫苗材料,已显示出增加肽抗原免疫原性的潜力。PNC 仅由交联肽抗原组成,并且已由长度小至 8 个氨基酸的几种肽抗原合成。然而,与许多肽疫苗生物材料一样,合成需要在肽中添加残基和/或共价接合抗原表位内的氨基酸以形成稳定的材料。为实现生物材料的结合或形成而进行的抗原修饰的影响很少被研究,因为大多数研究的目标是将可溶性抗原与生物材料形式的抗原进行比较。本研究调查了 PNC 作为平台疫苗生物材料,以评估肽修饰和具有不同交联化学性质的生物材料形成如何影响表位特异性免疫细胞呈递和活化。通过从模型肽表位 SIINFEKL 脱溶合成了几种类型的 PNC,该表位源自免疫原性蛋白卵清蛋白。SIINFEKL 被改变以在每个末端包含额外的残基,这些残基是经过战略性选择的,以便能够将多种结合化学选项掺入 PNC。使用了几种交联方法来控制使用哪些功能组来稳定 PNC,以及交联的可还原性。评估了这些变体在体内免疫后的免疫反应和生物分布。与单独的未修饰可溶性抗原相比,所有修饰抗原制剂在掺入 PNC 时仍会诱导相当的免疫反应。然而,一些交联方法导致所需免疫反应显著增加,而另一些则没有,这表明并非所有 PNC 的处理方式都相同。这些结果有助于指导未来的肽疫苗生物材料设计,包括 PNC 和各种共轭和自组装肽抗原材料,以最大化和调整所需的免疫反应。
摘要 目前先进材料研究领域的技术更新倾向于关注生物医学材料的应用以及镁及其合金的利用。镁 (Mg) 作为可生物降解骨科植入物的替代材料已被广泛研究。最近关于 Mg 的潜在应用的研究涉及其机械性能、生物降解特性以及体外和体内测试。本研究旨在回顾 Mg 的性能、生产工艺、生物材料路线图以及 Mg 合金化学成分在骨科应用中的关注点。同时还强调了镁合金性能未来潜在的改进。 关键词:镁合金;可生物降解;骨科植入物;生物材料路线图 1. 简介。
这项研究的主要目的是为组织工程应用开发经济,环保且可延展的生物材料。水和甘油已被用作明胶水凝胶合成的溶剂。这种溶剂混合物导致具有改善热性能的生物材料。确实,达到了16°C的热过渡温度。此外,为了增强机械性能,核黄素被用作交联剂。使用紫外线辐射开始化学交联步,以获得明胶链的核黄素自由基聚合,因此,明胶水凝胶的流变学特性得到了改善。因此,明胶 - 紫外线血凝胶水凝胶显示出良好的肿胀和增加的机械性能,获得了一种新颖的材料,用于药物输送和医疗用途。版权所有©2019 VBRI出版社。关键字:组织工程,生物聚合物,交联。简介
免疫系统在人类疾病的发展和发展中起着核心作用。因此,对免疫反应的调节是一个关键的治疗靶标,它使我们能够解决当今医学中一些最烦人的问题,例如肥胖,癌症,病毒感染和自身免疫性。通过治疗递送来操纵免疫系统的方法围绕两个共同的主题集中:生物材料的局部递送以影响周围的组织或系统性递送的可溶性材料系统,通常通过上下文特异性细胞或组织靶向策略的帮助。在任何一种情况下,超分子相互作用都可以控制分子规模的生物材料组成,结构和行为;通过合理的生物材料设计,使下一代免疫疗法和免疫抑制剂的实现成为可能。这篇简短的评论重点介绍了用于免疫治疗应用来利用大分子相互作用的方法,重点是药物输送模式。
AI提供了一个强大的DTE工具包,但需要解决某些限制。AI模型的准确性在很大程度上取决于培训数据的质量和数量。需要进一步的研究来创建特定于DTE的大型,标准化的数据集,包括多样化的患者人群和生物材料特征。此外,随着AI更加集成到临床工作流程中,需要解决有关患者数据隐私和AI预测的解释性的道德考虑。将AI整合到DTE中具有改变口服再生场的巨大潜力。通过克服生物材料设计,细胞行为预测和治疗个性化的当前局限性,AI为未来铺平了道路,使患者可以通过个性化的DTE治疗体验新的功能恢复和改善的生活质量。持续的研发工作集中在数据获取,道德考虑和AI模型的解释性上,对于实现DTE中这种强大技术的全部潜力至关重要。
