直接墨水写作(DIW)是一种用于制造个性化骨移植物的有前途的技术,因为它可以自定义其几何构象,具有高可重复性,并且与使用自我设定的缺乏钙缺乏钙的羟基磷灰石inks兼容。但是,DIW获得的支架主要由凸出丝组成,这是一个限制,因为已知凹面表面可以促进体内骨骼再生。在这项工作中,我们探讨了在磷酸钙自塑料墨水二维的三个周期性周期性最小表面(TPM)设计中的使用,作为获得具有控制的凹层巨孔的脚手架的策略。使用DIW使用高陶瓷墨水的印刷参数的局限性仅导致甲状腺,钻石和基于Schwarz的结构仅具有20%的名义孔隙率。从TPMS几何形状启用的固有的分层孔通常通过DIW无法实现,对随后的骨诱导能力具有重大影响。尽管基于TPMS的支架中的机械性能低于正交图案化的支架,但基于TPMS的结构的血液渗透性较高。凹孔结构增强了仿生陶瓷的成骨潜力,增加了SAOS-2细胞粘附,增殖,分化和矿化。
干细胞分化对生物医学设备设计和组织工程具有重要意义。最近,已经发现固有的材料特性,包括表面化学,刚度和地形,会影响干细胞的命运。其中,表面形貌是与材料接触的干细胞的关键调节剂。理想骨组织工程的最重要方面是控制具有完全分化的成骨细胞的骨外基质的组织。在这里,我们发现激光粉末床融合(PBF-LB)受骨骼微观结构的启发,该骨骼的启发,这诱导人间充质干细胞(HMSC)分化为成骨谱系,而没有任何不同的补充。通过PBF-LB制造了周期性的凹槽结构,该结构通过沿凹槽的细胞骨架张力促进了细胞伸长。这导致通过Runx2表达的成骨的上调。对齐的HMSC成功地分化为成骨细胞,并进一步组织了骨模拟于骨骼的细胞外基质微结构。我们的结果表明,金属添加剂制造技术在将干细胞命运控制到成骨谱系和骨模拟微结构组织的构造方面具有很大的优势。我们在标准细胞培养条件下对材料诱导的干细胞分化的发现开发了新的途径,以开发医疗设备,以实现由调节的干细胞功能介导的所需组织再生。
Springer Cham Heidelberg纽约Dordrecht London©Springer International Publishing Switzerland 2015这项工作将获得版权。所有权利都是由发行商保留的,无论材料的全部或部分都关注,特别是翻译,重新使用,插图的重复使用,重复插图,朗诵,广播,以任何其他物理方式或以任何其他物理方式进行复制,以及传输或传输或内部存储和检索,电子适应性,计算机软件,或通过类似或相似的方法,或者是相似的方法,或者现在是相似的方法。使用一般描述性名称,注册名称,商标,服务标记等。在本公共事件中,即使没有具体的陈述,这种名称也不受相关的保护法律和法规的限制,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。关于本文包含的材料或可能犯的任何错误或遗漏,发布者,作者或编辑都没有提供明示或暗示的保修。
3D生物打印斑块的心外膜移植代表了针对梗塞诱导的心肌损伤的有前途的保护策略。我们先前表明,含有心脏球体的3D生物打印组织(在藻酸盐/明胶(alggel)水凝胶中)促进了细胞活力/功能和内皮细胞管状自组件。在这里,我们假设生物打印的心脏球体斑块可改善心肌梗塞后心脏功能(MI)。为了确定单独或用细胞的水凝胶的治疗效果,将MI小鼠移植到:(i)Alggel caellular斑块,(ii)具有自由悬浮心脏细胞的alggel,(III)带有心脏球体的Alggel。我们包括对照MI小鼠(无治疗)和接受假手术的小鼠。我们进行了28天的测量,包括超声心动图,流式细胞仪和转录组分析。我们的结果测量了所有小鼠的基线基线(手术前)左心室射血分数(LVEF%),为66%。手术后,假(非敏感)的LVEF%为58%,MI(无治疗)小鼠为41%。斑块移植增加了LVEF%:55%(细胞; P = 0.012),59%(细胞; P = 0.106),64%(球体; P = 0.010)。流式细胞术表明宿主心脏组织免疫细胞种群随着治疗而变化。RNASEQ转录组显示了用心脏球形斑块处理的假和小鼠的类似基因表达谱。 挤出3D生物打印允许水凝胶斑块的产生,甚至可以保留直接悬浮在生物墨水中的微动心球体。RNASEQ转录组显示了用心脏球形斑块处理的假和小鼠的类似基因表达谱。挤出3D生物打印允许水凝胶斑块的产生,甚至可以保留直接悬浮在生物墨水中的微动心球体。炎症和遗传机制可能在梗塞心脏斑块移植后调节宿主反应中起重要作用。未来的研究来阐明这些初始发现的潜在的免疫细胞和基因表达相关的分子机制。
主要发展允许将无生物材料的细胞聚集体精确结构,以改善分辨率和复杂性的组织与组织相关的模式,而与简单地将球体添加在一起可以达到的分辨率和复杂性相比(6)。例如,仅由体细胞细胞组成的生物互联可以将其加载到生物打印喷嘴中,并挤出以成为仅细胞的链。然后,通过将仅细胞的生物键挤入支撑水凝胶浴中,将模式能力赋予。值得注意的是,将仅干细胞 - 仅生物材料的生物学与挤出生物打印结合在一起时,可能会出现定义明确的时空排列的器官。与仅通过细胞自组装纯粹产生的常规球形类器官相比,这些生物打印的类器官在体外表现出改善的一致性,差异效率和组织形成的穿孔。
伤口愈合(WH)是一个动态且复杂的生物学过程,由生长因子,细胞因子,趋化因子,不同细胞类型,细胞外基质(ECM)和蛋白酶之间的紧密协调相互作用组成(Nourian Dehkordi等,2019; Morbidelli等,2021)。WH通常分为几个事件:凝结,炎症,肉芽组织形成,增殖和重塑(Jimi等,2017; Cialldai等,2020)。修复过程的一个或多个阶段的改变或阻塞会导致慢性或顽固性伤口的形成,这可能在长期太空探索期间在宇航员中出现的问题(Riwaldt等,2021年)。的确,国家航空航天局(NASA)报道了宇航员对太空任务期间皮肤恶化的抱怨(Riwaldt等,2021; Garcia,2022)。长期暴露于µg的哺乳动物组织会引起机械应力,从而迅速改变,增加了骨骼,肌肉,肌肉,心血管容量和WH的生理变性风险。在
生物电子设备可以提供强大的工具,以充分地与电动性神经细胞和组织进行有效的沟通,从而使我们能够更好地了解复杂的生物学功能并治疗患有神经系统疾病的患者。[1]用于神经应用的生物电子设备的细胞或组织界面可以从使用与组织的机械和生化特性相匹配的合成水凝胶中受益。模仿细胞外基质的水凝胶也被广泛用作器官芯片设备中的细胞支持支架,[2] 3D细胞培养,[3]和用于3D生物印刷的生物互联。[4]使用含有细胞水凝胶的生物学的3D Bioprinting通过以3D空间分辨率排列细胞和材料来构建更复杂和功能性的组织和疾病模型,从而在神经组织工程中提供了para-digm的变化。[4,5]
• Lapomarda, A., et al., (2019). 基于果胶-GPTMS 的生物材料:面向组织工程应用的可持续 3D 支架生物打印。生物大分子,21 (2),319-327。 • Fortunato, GM, et al., (2019). 由水解角蛋白基生物材料制成的电纺结构,用于开发体外组织模型。生物工程和生物技术前沿,7,174。 • Lapomarda, A., et al., (2021). 果胶作为明胶基生物材料墨水的流变改性剂。材料,14(11),3109。 • Lapomarda, A., et al., (2021). 用于 3D 生物打印的果胶-明胶生物材料配方的物理化学表征。大分子生物科学,21(9),2100168。 • Pulidori, E., 等人,(2021)。一锅法:微波辅助角蛋白提取和直接电纺丝以获得角蛋白基生物塑料。国际分子科学杂志,22(17),9597。 • Pulidori, E., 等人(2022)从家禽羽毛中提取绿色角蛋白所产生的不溶性副产物作为生物复合材料填料的价值评估。热分析与量热学杂志:1-14。
三维打印是一种基于三维成像和逐层增材制造的新兴技术,它深刻地影响着我们生活的方方面面,在工程、制造、艺术、教育和医学等许多领域发挥着越来越重要的作用。随着3D打印技术的进步,“3D生物打印”应运而生,有望成为解决组织工程和再生医学领域中严重的人体器官短缺问题的一种可能途径。许多研究小组投身于这一领域,并取得了一些可喜的成果。然而,制造活体器官还有很长的路要走。导致3D生物打印受限的因素有很多。本文介绍了3D生物打印的背景和发展历史,比较了3D生物打印的不同方法,并阐述了打印过程中的关键因素。同时,本文还指出了3D生物打印存在的挑战和巨大的前景。本文提出的一些观点可供该领域的研究参考。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月9日。 https://doi.org/10.1101/2024.02.01.578324 doi:biorxiv Preprint