摘要:开发了基于石墨杆(GR)电极的两种类型的低成本试剂电化学生物传感器。用电化学合成的铂纳米结构(PTNS),1,10-苯磺氨酸-5,6-二酮(PD),葡萄糖氧化酶(GOX),没有息肉(PPY)层 - (PPY)层 - (I)GR/PTNS/PD/PD/PT/PT/PT/PT,分别准备和测试。Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 µ A/(mM cm 2 ), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage 稳定。基于GR/PTN/PD/GOX/PPY电极的开发的葡萄糖生物传感器对干扰化合物的耐药性具有非凡的耐药性,并证明对测定血清中葡萄糖水平的测定非常有效。
Advanced Materials for Biosensors – Special Issue of SMALL Arben Merkoçi Biosensors represent analytical devices that contain a biological or synthetic element (called receptor) such as enzymes, antibodies, aptamers and more, in close contact with a transducer that is able to transform the receptor's response while recognising an analyte (chemical or biochemical species with interest to be detected) into a measurable signal.生物传感器领域的研发引起了人们的重大关注,这是由于其在各个领域的应用,包括医疗保健,环境监测,食品安全和保障以及其他行业。对于多种应用程序,这些设备应满足放心的标准:实时连接,标本收集的便利性,负担得起,敏感,特定,特定,用户友好,快速,稳健,不含设备,并交付给需要这些的人。其井操作(满足分析性能参数)与在其制造过程中使用的不同部分(例如换能器和受体)在其制造过程中使用的纳米和微材料密切相关,此外还包括整个设备/平台集成,包括与最终用户的通信。在一般材料领域,尤其是纳米材料领域的进步在品牌新生物传感器的开发或改善现有培训的性能方面起着至关重要的作用,导致了新有趣的应用程序(例如植入或可穿戴的格式化形式生物传感器)。固定。此外,包括有趣的金属或聚合物颗粒在内的各种高级材料已被广泛报道为标签(例如,高级材料的独特性能,包括纳米材料,例如其高表面积面积与体积比,可调的光学,电气和催化性能以及它们的机械强度对生物传感器的设计和应用非常有吸引力。高级材料的重点首先是在试图提供其他信号放大的传感器上,同时被用作受体平台(生物分子等)使用包括复合材料在内的几种先进材料来改善传感器的电子传递性能对于提高电化学生物传感器的灵敏度至关重要。附着在信号抗体或适体上),以确保信号扩增。在不同的高级材料,2D材料之间(例如石墨烯,二维碳同素同素)一直是生物传感器研究中感兴趣的重点。电子特性,例如高电导率以及较大的表面积和出色的生物相容性,使得2DS的理想材料可用于生物传感。这些材料的高表面与体积比允许生物分子有效固定,这又带来了由于与受体的有效相互作用而带来的灵敏度和选择性增强。这些材料的独特电子性能也启用了无标签检测,非常要求它简化生物传感器设计,提供易于使用和快速响应设备。
摘要:在本文中,我们描述了一种基于动态复杂液晶乳液的高度负责的光学生物传感器。这些乳液的准备很容易,并且由不混溶的手性列液晶(N*)和碳碳油组成。在这项工作中,我们利用N*选择性反射来构建新的感应范式。我们的检测策略是基于通过与LC界面处的IgG抗体可逆相互作用通过可逆相互作用的硼酸聚合物表面活性剂的LC/W界面活性的变化。由于聚合物结构中的双phaphthyl单位的支撑,这种生物分子识别事件可能会改变N*组织的音高长度,该聚合物结构已知是强大的手性掺杂剂。我们证明,这些触发的反射变化可以用作检测食源性病原体沙门氏菌的有效光学读数。
摘要:在传感技术的领域中,传感器的吸引力在于其特殊的检测能力,高选择性,灵敏度,成本效益和最少的样本使用情况。值得注意的是,基于分子的印迹聚合物(MIP)传感器已成为从临床到环境应用的兴趣点。这些传感器为快速,选择性,可重复使用和实时筛选的各种分子提供了有希望的途径。用于制定各种聚合物格式的制备技术,从微粒到纳米材料,具有深远的影响。这些技术显着影响简化的传感系统的组装,表现出与其他技术的显着兼容性。此外,他们准备在实现下一代平台的实现中发挥关键作用,从而简化了针对各种目标量身定制的传感系统的制造。本综述是一种全面的探索,为传感器,分子烙印方法以及基于MIP的传感器的新兴域提供简洁的见解及其应用。探讨了最近的进步,这篇评论提供了一个基于印刷粒子和凝胶传感器的进步的详细摘要,从而阐明了新型传感系统的创建。此外,对不同应用的各种类型的基于MIP的传感器的独特性能进行了详尽的研究,丰富了对它们多功能性的理解。在总结部分中,本综述突出了有关针对各种分子的基于MIP的传感器的最新研究的最新实验。通过封装当前的研究状态,这项综述是一种宝贵的资源,提供了基于MIP的传感器开发的动态景观的快照及其对多样化科学和技术领域的潜在影响。
细胞因子释放综合征(CRS)是重症患者死亡的重要原因之一[1,2],它是指由于过度激活或失控的免疫系统产生的极端免疫反应,该系统在病毒入侵时会释放出大量细胞因子。细胞因子是一类由免疫细胞分泌的小分子可溶性肽蛋白。临床研究发现,COVID-19重症监护患者的血清促炎细胞因子水平显着升高。白介素2(IL-2)是典型的细胞因子之一[3,4]。在发生严重CRS之前检测患者血清样品中与CRS相关的细胞因子并在炎症反应中进行介入是临床诊断的重要组成部分,这是正确预先确定的治疗指南的重要指南。由于血清中的细胞因子浓度低(PM范围),因此需要高敏性生物传感器才能检测。Terahertz(THZ)超材料生物传感器是一种无损,无标签,高度敏感的传感器,用于PM级细胞因子检测。但是,大多数典型的超材料是金属基阵列结构,而设备的低Q因子限制了由于高金属损耗而引起的传感器的灵敏度。与金属结构的超材料相比,介电的超材料的损失较低,Q因子较高,并且可以用作THZ超材料生物传感器,以显着提高传感器的灵敏度和检测限。Yang创造性地报道了中的基于硅的双间隙拆分结构Yang创造性地报道了考虑了FANO共振,以进一步改善设备的Q因子,例如,基于硅纳米条[5],不对称 - 切割线超材料[6]的介电FANO共振结构[6],以及连续的全dielectric Boundic boundic boundic body态[7]。
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。
在生物传感器技术中使用二维(2D)材料已革命 - 领域。像石墨烯,过渡金属二核苷(MOS 2和WS 2)这样的材料,六角硼(H-BN)和黑磷具有纳米级厚度和不同的物理特性,可能会大大增强生物传感器的性能[1]。石墨烯具有特殊的电导率和机械强度,以其在生物传感器中的多功能性而广泛认可。其平面结构和高电子迁移率提高了敏感性和特定的特定性,使其成为理想的组成部分[2]。过渡金属二分法源(例如MOS 2和WS 2)由于其分层结构而具有独特的半导管特性。这些材料可以与光线和电场相互作用,使其特别适合需要精确的电特性的生物传感器应用[3]。此外,研究增强了2D材料在癌症生物传感器中的作用:一种用于肺癌检测的MOS 2 /CU 2 O传感器[4],PEC生物传感器的食管癌[5]和用于广泛癌细胞检测的实验室芯片设计[6]。
1深圳的光子设备和物联网传感系统的关键实验室,广东和香港光纤传感器联合研究中心,射电频率异质整合的国家关键实验室,深圳大学518060,中国2 shenzen键盘/NON NON NONO MIPTORONICTIROURTION,NONERROCTION MIPTOROCTION,NONE MIPTORONICTIROURTION教育部/广东省物理与光电工程学院,深圳大学,深圳518060,中国3号广东人工智能与数字经济实验室(SZ) Koszykowa 75,00-662波兰华沙 *通信:yingwang@szu.edu.cn
医疗技术的进步始终在增强医疗结果方面发挥了关键作用。生物传感器和纳米诊断者代表了尖端科学符合实用医疗解决方案的边界。这些技术利用纳米技术的原理开发可以以前所未有的准确性和效率来检测特定的生物学标记的设备。生物传感器是分析设备,将生物成分与物理检测器结合在一起,以识别和量化生物学元素。生物学成分,通常是一种酶,抗体或核酸,与靶性生物分子相互作用,触发可测量的信号。生物学和技术的这种整合已经在各种领域发现了应用,医疗保健是主要受益人。生物传感器的灵敏度允许检测与各种疾病相关的生物标志物,浓度非常低。从糖尿病患者的葡萄糖监测到癌症生物标志物检测,生物传感器正在彻底改变诊断。这些设备正成为个性化医学不可或缺的一部分,并根据个人的独特分子概况来调整治疗方法[1]。
本文使用用于不同生物学应用的纳米和微观尺寸来回顾传感器。生物传感器将生物学反应转化为电信号。近年来,在生物传感器的设计和开发方面取得了显着进步,这些进步产生了大量的生物传感器应用,包括医疗保健,疾病诊断,药物输送,环境监测以及水和食物质量监测。通过提高灵敏度,可重复性和传感器响应时间来增强生物传感器的性能,这已经有重要的工作。然而,这些技术的关键挑战是它们有效地捕获和转化生物学信号转化为电气,光学,重力,电化学或声学信号的能力。本综述总结了各种生物传感器的分类,设计注意事项和多种应用的工作原理。本文强调的其他研究线重点是使用微型和纳米 - 实用技术的生物传感设备的微型化,以及在生物传感中使用纳米材料。最近可穿戴的传感器具有重要的应用,例如监测家庭和社区环境中慢性状况的患者。本评论论文提到了可穿戴技术的应用。机器学习被证明是为了帮助发现医疗应用领域的新知识。我们还审查了基于人工智能(AI)和机器学习(ML)的应用程序。[doi:10.1115/1.4063500]