摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
石墨烯场效应晶体管(GFET)由于其在生物分子信号扩增中的出色特性而被广泛用于生物传感,在临床诊断中具有高度敏感性和高温和护理测试的潜力。然而,复杂的制造步骤中的困难是GFET的进一步研究和应用的主要局限性。在这项研究中,引入了一种模块化制造技术,以在3个独立的步骤内构建微流体GFET生物传感器。纳入了低熔化的金属电极和复杂的流道,以维持石墨烯的结构完整性并促进后续的感应操作。实用的GFET生物传感器具有出色的长期稳定性,并且在各种离子环境中有效地表现。它还表现出高灵敏度和选择性,可在10 FM浓度下检测单链核酸。此外,当与CRISPR/CAS12A系统结合使用时,它促进了以1 FM浓度的核酸无扩增和快速检测。因此,据信这种模块化的微流体GFET可能会揭示在各种应用中基于FET的生物传感器的进一步发展。
摘要:表面等离子体,连续和累积的电子振动构成了金属介电界面,在汇总纳米结构上的光界和能量方面起着关键作用。这种结论利用了其空间效果的内在次波长性质,显着增强了光 - 代言的相互作用。金属,半导体和2D材料在各种波长处表现出等离子体共振,从紫外线(UV)到远红外,由它们的独特特性和结构决定。表面等离子体为各种光 - 物质相互作用机制提供了一个平台,并利用了等离子结构内电磁场的高度增强。通过理论,计算和实验研究证实了这种增强。在这项全面的综述中,我们深入研究了基于金属和超材料的传感器的等离子体增强过程,考虑了诸如几何影响,谐振波长,化学特性和计算方法之类的因素。我们的探索扩展到实用应用,包括基于局部的表面等离子体共振(LSPR)的平面波导,基于聚合物的生物芯片传感器和基于LSPR的纤维传感器。最终,我们旨在为开发下一代,高性能等离子技术设备提供见解和指南。
病毒是导致全球各种疾病的传染性病原体。最近的 COVID-19 大流行表明,需要快速可靠的检测来确认病毒感染,旨在快速分离、治疗和识别高发地区。基于侧向流免疫层析的快速抗原检测已被证明非常有用。然而,它们对于病毒载量低的患者并不准确。金标准测试是 RT-PCR,它通过检测特定的 DNA 或 RNA 序列来识别病毒基因组的部分。RT-PCR 或类似测试(如 RT-LAMP)涉及样品制备和靶序列扩增的几个步骤,需要训练有素的人员进行,并且可能耗时且昂贵,限制了它们的即时应用。生物传感器是一种很有前途的分析设备,用于检测核酸(主要是病毒中的 RNA),与 RT-PCR 测试相比,由于无需扩增靶序列,因此具有快速、高灵敏度和低成本等优势。最近,已经开发出几种无需扩增序列即可检测 RNA 病毒的生物传感器。本文,我们综述了无需扩增的生物传感器的设计和技术,用于检测病毒 RNA,作为诊断传染病的替代方法。本文将讨论即时诊断电化学、电气和光学生物传感器的挑战和进展。
摘要:源自工业,农业和城市来源的酚类化合物可以渗入流水,对水生生物,生物多样性以及损害饮用水质量的不利影响,对人类构成潜在的健康危害。因此,监测和减轻流水中酚类化合物的存在对于保护生态系统的影响和保护公共卫生至关重要。这项研究探讨了基于用石墨烯(GPH)(GPH),Poly(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)和酪氨酸酶(TY)修饰的屏幕打印电极(SPE)的创新传感器的开发和性能,设计用于水分析,专注于制造过程和所获得的耗载结果。拟议的生物传感器(SPE/GPH/PEDOT/TY)旨在达到高度的精度和灵敏度,并允许有效的分析回收率。特别注意修改元素组成的制造过程和优化。这项研究强调了生物传感器作为水分析的有效且可靠的解决方案的潜力。用石墨烯,PEDOT聚合物的合成和电聚合沉积和酪氨酸酶固定的修饰有助于获得高性能和稳健的生物传感器,从而提出了监测水生环境质量的有希望的观点。生物传感器的灵敏度增强,可促进河水样品中的检测和定量。分析恢复也是一个重要方面,生物传感器提出一致且可重复的结果。关于电分析实验结果,使用该生物传感器获得的检测极限(LOD)对于所有酚类化合物(8.63×10-10-10-10-10 m for Catechol,7.72×10-10 m均为3-甲氧基毒素的7.72×10-10 m,对于4-甲基氧气的3--氧化氧气和9.56×10 m的能力,可用于4-甲基元素的均匀分数,适合4-甲基元素的特征,均匀均匀跟踪复合参数。此功能可显着提高生物传感器在实际应用中的可靠性和实用性,使其适合监测工业或河水。
摘要:在过去的十年中,可穿戴生物传感器技术(WBT)已成为教育系统中的一种变革性工具。这项系统的审查包括对教育环境中WBT利用的全面分析(2012-20222),突出了该领域的发展,通过整合技术来解决特定的教育挑战,以解决教育的挑战,以解决特定的教育挑战,例如增强学生的互动,增强学生的互动,监测和认知的学习体验,并改善了学习经验,并改善了学生的实时和教育者,并提供了实时的成员和返还返还者,并提供了返回学生。通过探索这些方面,本评论阐明了WBT对学习未来的潜在影响。根据PRISMA指南进行了对包括Google Scholar和Scopus在内的主要学术数据库的严格搜索。相关研究。使用既定工具评估了所选文章的方法论质量和偏见。数据提取和合成的过程遵循结构化框架。关键发现包括从理论探索到实际实施的转变,而脑电图是主要的测量,旨在探索精神状态,生理结构和教学效果。可穿戴生物传感器正在显着影响教育领域,这是教育工作者的重要资源,也是学生的工具。他们的政策有可能通过捕获生物识别数据的传感器来改变和优化学术实践,从而实现指标和模型,以了解学术环境中学生和教授的发展和表现,并了解学习过程。
摘要 - 在这项工作中,提出了嵌入矩形开放通道(ROC)的表面等离激子共振(SPR)等离子光子晶体纤维(PCF)生物传感器,从而实现了健康和肿瘤的脑组织之间的精确检测和歧视。健康和肿瘤组织被认为是液体组织,每个组织都有其自身独特的折射率(RI)。将ROC涂有金(AU)以生成表面等离子体。为了促进足够的生物分子,薄的Ti 3 C 2 Tx-Mxene层在金上官能化。在ROC表面上涂有薄TIO 2层,以强烈保留Au纳米颗粒,以确保提高感应性能。健康,癌性和肿瘤组织样品表现出独特的共振波长,可以通过测量各自共振波长的变化来诊断它们。评估了基本的性能参数,包括灵敏度,最大(FWHM)和功绩(FOM)的全宽度。对正常组织和异常组织的计算敏感性,即灰质,脑脊液和少突胶质瘤的敏感性为12352.94 nm/riU,2030.45 nm/riU,以及672.26 nm/riu,相对于白色物质和固体脑的壁架测量。,对于肿瘤组织(癌和肿瘤),例如胶质母细胞瘤,淋巴瘤和转移,敏感性为800 nm/riU,774.9 nm/riU和643.26 nm/riU,与低级Glioma(Benignign)一起测量。此外,拟议的生物传感器的分辨率(R)范围为𝟏。𝟐𝟓×𝟏𝟎−𝟒至𝟖。𝟎𝟗×𝟏𝟎 -𝟔riU,最大FOM为126.05 riU -1。因此,该生物传感器有望在检测肿瘤和癌症组织方面表现出色,使其成为推进医学诊断的有前途的候选人。
microRNA(miRNA)在早期诊断自动流动性疾病中起着至关重要的作用,而Hidradenenitis Purpurativa(HS)是一个显着的例子。hs,一种影响毛s骨单位的自身炎性皮肤疾病,对患者的生活质量产生了深远的影响。其隐藏的性质,具有阴险的初始症状和患者不愿寻求医疗咨询的情况,通常会导致长达7年的诊断延迟。认识到早期诊断工具的紧迫性,最近的研究确定了循环miRNA表达的显着差异,包括miR-24-1-5p,miR-146a-5p,miR26a-5p,miR26a-5p,miR-206,miR-206,miR338-3p,miR338-3p和miR-338-5p,HS患者和健康对照者之间的miR-338-5p。这些miRNA是早期疾病检测的潜在生物标志物。传统的分子生物学技术,例如使用特定引物和探针进行检测,例如逆转录定量 - 聚合酶链反应(RT-QPCR)。另外,短肽为捕获miRNA提供了一种多功能和有效的手段,提供了特定的养殖,易于合成,稳定性和多重潜力。在这种情况下,我们提出了一种用于制作肽序列的计算模拟管道,该管道可以捕获自身炎性皮肤疾病(包括HS)患者的血液中的循环miRNA。这种创新的方法旨在加快早期诊断并增强治疗性随访,以解决及时干预HS和类似疾病的关键需求。
电化学生物传感器已成为通过非侵入性汗液分析跟踪人体生理动态的有前途的工具之一。然而,以高度可控和可重复的方式集成多路复用传感器以实现长期可靠的生物传感仍然是一个关键挑战,尤其是在灵活的平台上。本文首次报道了一种完全喷墨打印和集成的多路复用生物传感贴片,它具有极高的稳定性和灵敏度。这些理想的特性是通过独特的互穿界面设计和对活性材料质量负载的精确控制实现的,这要归功于优化的油墨配方和液滴辅助打印工艺。该传感器对葡萄糖的灵敏度为 313.28 μ A mm − 1 cm − 2,对酒精的灵敏度为 0.87 μ A mm − 1 cm − 2,并且在 30 小时内漂移最小,这是文献中最好的。集成贴片可用于可靠、无线的饮食监测或通过表皮分析进行医疗干预,并将促进可穿戴设备在智能医疗应用方面的进步。
摘要:核酸分析在疾病诊断和治疗中起重要作用。CRISPR技术的发现为检测核酸的检测提供了新颖而多功能的方法。但是,使用最广泛的CRISPR-CAS12A检测平台缺乏将单链DNA(ssDNA)与双链DNA(DSDNA)区分开的能力。为了克服这一局限性,我们首先采用了抗Crispr蛋白(ACRVA1)来开发一种新型的CRISPR生物传感器,以专门检测ssDNA。在这种传感策略中,ACRVA1切割CRISPR指南RNA(CRRNA)抑制CRISPR-CAS12A系统的裂解活性。只有ssDNA具有募集裂解的crRNA片段以恢复CRISPR-CAS12生物传感器的检测能力,但DSDNA无法实现这一目标。通过测量CRISPR-CAS12A生物传感器的回收裂解活性,我们开发的ACRVA1辅助CRISPR生物传感器能够将ssDNA与dsDNA区分开,为检测SSDNA的检测提供了一种简单可靠的方法。此外,我们证明了我们开发的ACRVA1辅助CRISPR生物传感器,以监测解旋酶的酶促活性并筛选其抑制剂。关键字:基于CRISPR的生物传感器,CAS12A(CPF1)核酸酶,抗Crispr蛋白,ACRVA1,单链DNA(SSDNA)