几乎所有有机(光)电子器件都依赖于具有特定属性的有机/无机界面。这些属性反过来又与界面结构密不可分。因此,结构的变化会导致功能的变化。如果这种变化是可逆的,它将允许构建可切换的界面。我们用 Pt(111) 上的四氯吡嗪实现了这一点,它表现出双阱势,具有化学吸附和物理吸附最小值。这些最小值具有明显不同的吸附几何形状,允许形成可切换的界面结构。重要的是,这些结构促进了不同的功函数变化和相干分数(X 射线驻波测量),这是读出界面状态的理想属性。我们使用改进版本的 SAMPLE 方法执行表面结构搜索,并使用从头算热力学来解释热力学条件。这允许研究数百万个相称以及高阶相称的界面结构。我们确定了三种不同的结构类型,它们表现出不同的功函数变化和相干分数。使用温度和压力作为控制点,我们展示了在这些不同类型之间可逆切换的可能性,为有机电子学中的潜在应用创建了一个动态界面。
Bistable图像,也称为模棱两可的图像或可逆图像,显示了视觉刺激,尽管观察者并非同时,但可以在两个不同的解释中看到。在这项研究中,我们使用可动的图像对视觉模型进行了最广泛的检查。我们手动收集了一个数据集,其中包括29张Bissable图像以及它们的相关标签,并在亮度,色彩,旋转和分辨率方面进行了121种不同的操作。我们评估了六个模型体系结构的分类和属性任务中的十二个不同模型。我们的发现表明,除了来自Idefics家族和llava1.5-13b的模型外,在模型之间,一个相对于另一个相对于另一个相对于另一个相对于图像操作的差异的明显偏爱,对图像旋转的例外很少。另外,我们将模型的偏好与人类进行了比较,并指出这些模型并没有与人类相同的连续性偏见,并且通常与人类初始解释有所不同。我们还调查了提示中的变化和使用同义标签的影响,发现与图像训练数据相比,这些因素明显更多的是模型的解释,而不是图像较高的图像表现出对Bissable图像解释的影响更高。所有代码和数据都是开源的1。
在本文中介绍了具有高度紧凑型配置中的灵活电子和电路的多功能可部署超薄复合动臂的新颖概念,可以监视其在空间中的部署动态。此概念特别适合有效载荷量极有限的立方体。多功能可部署的繁荣将是安装在3U立方体中的飞行硬件,该硬件计划于2023年作为空间技术演示启动到国际空间站(ISS)。多功能动臂由可动的超薄复合动臂,灵活的电子设备和动态监控电路组成,以及嵌入式柔性薄导线,用于动力传递和数据传输。提出了多功能动臂的设计,材料和制造方法。在模拟空间环境中进行的测试显示了在7°C至50°C的温度范围内的柔性电子设备的生存能力和稳定性,高真空水平约为1×10 -6 -6 TORR。基于地面的振动和部署测试证明了多功能繁荣,数据采集系统和部署机制的整体设计。对从集成柔性电子设备获得的数据的分析成功地捕获了部署动力学,并确定了繁荣的固有频率在0-100 Hz范围内。这些结果表明,该概念是对未来多功能超薄可部署空间结构的一种有希望的方法。
&这些作者为这项工作做出了同样的贡献,应被视为联合第一作者 *通讯作者。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。 黄)。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。黄)。
已经开发出能够进行多模式运动的机器,这些机器能够在非结构化环境中机动,用于搜索和救援行动、[2] 监控和防御等应用。 [3] 这种多模态性通常通过 i)身体形状变形、ii)步态改变或 iii)使用不同的驱动或推进机制实现。 一种流行的方法是使用专门用于相应环境中运动的不同推进机制(例如,螺旋桨用于飞行和游泳,轮子用于陆地运动 [4,5] )。 然而,多种推进机制会使设计复杂化,并增加此类系统的重量。 同样,使用能够实现不同步态和运动模式的单一推进机制可以简化设计,但通常会导致在某些环境中的移动性受到更多限制。 [6–8] 一种有前途的替代方案是利用身体的可逆形状变形,这样就可以重新调整一组常见的执行器或机器人肢体,以执行新的地面接触或流体结构相互作用模式(参见参考文献 [9–11] 中的示例)。软机器人特别适合可逆形状变化,因为它们具有机械可变形性和对受控刺激的形态反应。最近,Baines 等人提出了一种形状变形肢体,它可以利用刚度调节在鳍状肢和腿之间变换。[12] 这种肢体被安装在受海龟启发的机器人 [6] 上,以促进两栖运动。Shah 等人提出了一种
我们介绍了一种测量人类注意力的方法,用于在执行视觉任务时测量对双稳态图像的不同解释。向九名健康志愿者展示了具有闪烁面的 Necker 立方体。立方体前后面的像素强度分别由频率为 6.67-Hz (60/9) 和 8.57-Hz (60/7) 的正弦信号调制。这些频率及其二次谐波的标签在从枕叶皮层记录的脑磁图 (MEG) 数据的平均傅里叶光谱中清晰可辨。在实验的第一部分,要求受试者通过将立方体方向解释为左向或右向来自愿控制注意力。因此,我们观察到相应光谱成分的主导地位,并测量了自愿注意力的表现。在实验的第二部分,要求受试者只是观察立方体图像,而无需对其进行任何解释。在第二谐波标记频率处,主要光谱能量的交替被视为立方体方向的变化。基于第一阶段实验的结果,并使用小波分析,我们开发了一种新方法,使我们能够识别当前感知到的立方体方向。最后,我们使用主导时间分布来描述非自愿注意力,并将其与自愿注意力表现和大脑噪音联系起来。特别是,我们已经表明,注意力表现越高,大脑噪音就越强。
使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
摘要。本文给出了WIEN桥振荡器(JJSWBO)刺激的Josephson结数(PRNG)的推导及其微控制器验证。通过JJSWBO的数值研究,构成系统参数的不同坐标空间中的百科全书动态图明确阐述了呈现最大Lyapunov指数(GLE)的系统的全局行为。混乱的行为被捕获,以大于零的GLE,而GLE的周期性行为小于零。此外,分叉特征暴露了可周期性的振荡和可周期性的周期性振荡,可周期性的兼诊途径,可与可混乱的混乱途径,可行的常规行为的拦截以及可混乱的表现,共存的吸引者,单稳定的混乱动力学和内在的现象现象。提出了JJSWBO的微控制器验证(MCV),以验证数值仿真结果。从描述JJSWBO的混沌方程式,设计了一个线性反馈移位寄存器(LFSR)作为后处理单元的PRNG。通过使用NIST 800-22测试套件成功测试了来自建议的基于JJSWBO的PRNG的生成二进制数据的随机性。此结果有助于确认JJSWBO对加密方案和其他基于混乱的应用程序的适用性。
1剑桥大学心理学系,CB2 3EB剑桥,2个Vicertoria de Revissionacion y Posgrado,Catolica del Maule,TALCA 3480112,智利,3个大脑和思维研究所,西安塔里奥大学,伦敦,伦敦大学,伦敦,伦敦46a 3k7,46a 3k7 IAGO 8370076,智利,6个计划,伊伯氏丝比,医院,布宜诺斯艾利斯艾利斯,布宜诺斯艾利斯C1199BB,阿根廷7实验心理学和神经科学实验室(LPEN),认知和转化神经科学研究所(Incogentical Cockience and intaimentimen)技术研究委员会(CONICET),布宜诺斯艾利斯,阿根廷,心理学9学院,社会和认知神经科学中心(CSCN),阿道夫大学智利圣地亚哥伊巴涅斯 2485,10 肯特大学计算机学院,ME4 4AG 查塔姆,英国和 11 剑桥大学临床神经科学系,CB2 3EB 剑桥,英国