Bistable图像,也称为模棱两可的图像或可逆图像,显示了视觉刺激,尽管观察者并非同时,但可以在两个不同的解释中看到。在这项研究中,我们使用可动的图像对视觉模型进行了最广泛的检查。我们手动收集了一个数据集,其中包括29张Bissable图像以及它们的相关标签,并在亮度,色彩,旋转和分辨率方面进行了121种不同的操作。我们评估了六个模型体系结构的分类和属性任务中的十二个不同模型。我们的发现表明,除了来自Idefics家族和llava1.5-13b的模型外,在模型之间,一个相对于另一个相对于另一个相对于另一个相对于图像操作的差异的明显偏爱,对图像旋转的例外很少。另外,我们将模型的偏好与人类进行了比较,并指出这些模型并没有与人类相同的连续性偏见,并且通常与人类初始解释有所不同。我们还调查了提示中的变化和使用同义标签的影响,发现与图像训练数据相比,这些因素明显更多的是模型的解释,而不是图像较高的图像表现出对Bissable图像解释的影响更高。所有代码和数据都是开源的1。
已经开发出能够进行多模式运动的机器,这些机器能够在非结构化环境中机动,用于搜索和救援行动、[2] 监控和防御等应用。 [3] 这种多模态性通常通过 i)身体形状变形、ii)步态改变或 iii)使用不同的驱动或推进机制实现。 一种流行的方法是使用专门用于相应环境中运动的不同推进机制(例如,螺旋桨用于飞行和游泳,轮子用于陆地运动 [4,5] )。 然而,多种推进机制会使设计复杂化,并增加此类系统的重量。 同样,使用能够实现不同步态和运动模式的单一推进机制可以简化设计,但通常会导致在某些环境中的移动性受到更多限制。 [6–8] 一种有前途的替代方案是利用身体的可逆形状变形,这样就可以重新调整一组常见的执行器或机器人肢体,以执行新的地面接触或流体结构相互作用模式(参见参考文献 [9–11] 中的示例)。软机器人特别适合可逆形状变化,因为它们具有机械可变形性和对受控刺激的形态反应。最近,Baines 等人提出了一种形状变形肢体,它可以利用刚度调节在鳍状肢和腿之间变换。[12] 这种肢体被安装在受海龟启发的机器人 [6] 上,以促进两栖运动。Shah 等人提出了一种
在本文中介绍了具有高度紧凑型配置中的灵活电子和电路的多功能可部署超薄复合动臂的新颖概念,可以监视其在空间中的部署动态。此概念特别适合有效载荷量极有限的立方体。多功能可部署的繁荣将是安装在3U立方体中的飞行硬件,该硬件计划于2023年作为空间技术演示启动到国际空间站(ISS)。多功能动臂由可动的超薄复合动臂,灵活的电子设备和动态监控电路组成,以及嵌入式柔性薄导线,用于动力传递和数据传输。提出了多功能动臂的设计,材料和制造方法。在模拟空间环境中进行的测试显示了在7°C至50°C的温度范围内的柔性电子设备的生存能力和稳定性,高真空水平约为1×10 -6 -6 TORR。基于地面的振动和部署测试证明了多功能繁荣,数据采集系统和部署机制的整体设计。对从集成柔性电子设备获得的数据的分析成功地捕获了部署动力学,并确定了繁荣的固有频率在0-100 Hz范围内。这些结果表明,该概念是对未来多功能超薄可部署空间结构的一种有希望的方法。
1剑桥大学心理学系,CB2 3EB剑桥,2个Vicertoria de Revissionacion y Posgrado,Catolica del Maule,TALCA 3480112,智利,3个大脑和思维研究所,西安塔里奥大学,伦敦,伦敦大学,伦敦,伦敦46a 3k7,46a 3k7 IAGO 8370076,智利,6个计划,伊伯氏丝比,医院,布宜诺斯艾利斯艾利斯,布宜诺斯艾利斯C1199BB,阿根廷7实验心理学和神经科学实验室(LPEN),认知和转化神经科学研究所(Incogentical Cockience and intaimentimen)技术研究委员会(CONICET),布宜诺斯艾利斯,阿根廷,心理学9学院,社会和认知神经科学中心(CSCN),阿道夫大学智利圣地亚哥伊巴涅斯 2485,10 肯特大学计算机学院,ME4 4AG 查塔姆,英国和 11 剑桥大学临床神经科学系,CB2 3EB 剑桥,英国