我们展示了将双态系统的集合耦合到公共腔场中如何影响该集合的集体随机行为。,该腔提供了系统之间的有效相互作用,并且参数修改了亚稳态状态之间的过渡速率。我们预测,腔体在临界温度下诱导相变,该温度线性取决于系统数量。它显示为自发对称性破坏,在双叉系统的固定状态下。我们观察到过渡速率独立于相变的放慢速度,但是对于系统 - 腔耦合的交替符号,速率修改消失,对应于偶极子的无序集合。我们的结果在极化化学中具有特别的相关性,在极化化学中,已经提出了腔的存在来影响化学反应。
肿瘤细胞异质性是有效设计靶向抗癌疗法的主要障碍。药物治疗前表型不同的肿瘤细胞亚群的多样化分布容易导致反应不一致,导致敏感癌细胞被消除,而耐药亚群却不受伤害。很少有人提出量化与个体癌细胞异质性相关的变异性并将其对临床结果的不良影响降至最低的策略。在这里,我们报告了一种计算方法,该方法可以合理设计涉及针对染色质修饰剂的表观遗传药物的组合疗法。我们制定了一个二价转录因子的随机模型,使我们能够表征三种不同的定性行为,即:双稳态、高基因表达和低基因表达。分析结果与实验数据的比较确定了所谓的双稳态和高基因表达行为可以分别与未分化和分化细胞类型识别。由于具有异常自我更新潜能的未分化细胞可能表现出癌症/转移起始表型,我们在双稳态子集合内的异质性背景下分析了表观遗传药物组合的效率。虽然单靶向方法大多无法规避肿瘤异质性所代表的治疗问题,但组合策略的效果要好得多。具体而言,预计更成功的组合涉及组蛋白 H3K4 和 H3K27 去甲基化酶 KDM5 和 KDM6A/UTX 的调节剂。然而,那些涉及 H3K4 和 H3K27 甲基转移酶 MLL2 和 EZH2 的策略预计效果较差。我们的理论框架为开发一种计算机模拟平台提供了连贯的基础,该平台能够识别最适合治疗管理异质癌细胞群非均匀反应的表观遗传药物组合。
我们介绍了一个定理,该定理限制在球形表面上的kirigami tessellations时,带有图案性缝隙形成了自由形式的四边形网格。我们表明,球形kirigami镶嵌具有一个或两个兼容状态,即,最多有两个沿部署路径的隔离菌株配置。该定理进一步揭示了从球形到平面kirigami tessellations的刚性到扁平的过渡,并且仅当狭缝形成平行四边形空隙以及消失的高斯曲率时,这也通过能量分析和模拟来证实。在应用方面,我们显示了基于定理的Bistable球形圆顶结构的设计。我们的研究为基于欧几里得和非欧几里得几何形状的可变形结构的合理设计提供了新的见解。
• 动态补偿、突变抗性和 2 型糖尿病 • 应激激素轴作为双腺振荡器 • 甲状腺及其不满 • 自身免疫性疾病作为突变监视的脆弱性 • 炎症和纤维化作为双稳态系统 • 衰老的基本事实 • 衰老和饱和修复 • 与年龄相关的疾病 • 其他疾病的案例研究 • 医学作为控制机制 • 精准医疗和靶向治疗
摘要:本文介绍了一种采用突跳屈曲 (STB) 机制进行频率上转换 (FuC) 的压电能量收集器。该收集器由两个主要部件组成:双稳态机械结构和一个压电悬臂梁。该装置采用分析方法和数值模拟设计。制造了一个概念验证原型并在低频机械激励下进行了测试。实验结果表明,如果从第二个稳定配置回到未变形配置,如果诱发 STB,则可以获得 FuC,并且梁的响应会呈现很宽范围内的频率分量,即使悬臂梁的共振频率没有被激发。因此,结果与预期行为一致:如果强制处于第二个稳定配置的设备受到幅度超过阈值的低频激励,则会触发 STB,随后的 FuC 会导致梁振动频率范围扩大,从而显著提高功率输出效率。通过使用最佳电阻负载作为 STB,从双稳态机制的一个稳定配置触发另一个稳定配置,可获得 4 mW 的最大功率;如果采用带储能电容器的整流电路,可获得 4.5 µJ 的最大能量。
1简介2 1.1量子信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2量子误差校正。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.2.1经典误差校正。。。。。。。。。。。。。。。。。。。。。。。5 1.2.2位较高校正。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.3古典计算机记忆。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>81。1.31动态RAM。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 91。1.3.2静态RAM。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10 1.3.3.3结论。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>81。1.31动态RAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>91。1.3.2静态RAM。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10 1.3.3.3结论。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>91。1.3.2静态RAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 1.3.3.3结论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.4经典力学中的双态系统。。。。。。。。。。。。。。。。。11 1.4.1驱动振荡器。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 1.4.2参数振荡器。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.5超导电路。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.6大纲。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16
-Lunni,Dario等。“对软聚合物纳米纤维的光辅助旋转监测。”科学报告10.1(2020):1-12。-Lunni,Dario等。“基于吸湿电纺纳米纤维的植物启发的软性双重结构。”高级材料接口7.4(2020):1901310。-Lunni,Dario等。“空中操纵的非线性模型预测性控制”。2017年无人飞机系统(ICUAS),国际会议。
Total capacity - Total capacity - Total capacity Total Renewable Energy Total renewable energies 2 Total Energías Renovable Hydroelectricity 5 Hidroelectrica renewable Hydropower (Including Mixed Plants) Renewable hydroelectricity (including mixed power plants) (Includas las plantas mixtas) Pure Pumped Storage Accumulation by pumping 11 Hidroeléctrica de Bombeo Pura Marine Energy Energy海洋12EnergíaMarina风能风能13EnergíaEólica陆上风能能量能量泥土泥土泥土16EnergíaEólicaEnergial Energy Energy Energy Energy Energy Energy Energy Energy Energy Energime Wind Turbine Solarine Solar Energy Solar Energy Solar Solar Solar Solar Solar Energy 20 TermoEléctricricabioenergybioénergie27生物烯类固体生物燃料和可再生废物固体生物固定物和可再生废物29生物固定物sólidossólidosssólidosy renovable bistable y renovable bistaus
摘要。在有丝分裂纺锤体中,微管在中期通过捕获键附着在动粒上,微管解聚力引起随机染色体振荡。我们研究了纺锤体模型中的协同随机微管动力学,该模型由一组平行微管组成,这些微管通过弹性接头附着在动粒上。我们包括微管的动态不稳定性以及弹性接头对微管和动粒的作用力。采用基于福克-普朗克方程的平均场方法,对外力作用于动粒的单侧模型进行分析求解。该解建立了微管集合的双稳态力-速度关系,与随机模拟一致。我们推导出双稳态的接头刚度和微管数的约束。单侧纺锤体模型的双稳态力-速度关系导致双侧模型中的振荡,这可以解释中期随机染色体振荡(方向不稳定性)。我们推导出中期染色体振荡的连接体刚度和微管数的约束。将极向微管通量纳入模型,我们可以解释实验观察到的极向通量速度高的细胞中染色体振荡的抑制。然而,在存在极向喷射力的情况下,染色体振荡持续存在,但幅度减小,姊妹动粒之间有相移。此外,极向喷射力是必要的,以使染色体在纺锤体赤道处对齐,并稳定两个动粒的交替振荡模式。最后,我们修改了模型,使得微管只能对动粒施加拉力,从而导致两个微管集合之间发生拉锯战。然后,到达动粒后诱发的微管灾难是刺激振荡的必要条件。该模型可以定量再现 PtK1 细胞中动粒振荡的实验结果。