PH-UY 2344 现代和固体物理学导论 (4 学分) 通常在春季提供 狭义相对论、迈克尔逊莫雷实验。普朗克量子假设、光电效应、康普顿效应、卢瑟福散射、玻尔原子、德布罗意波长、电子衍射、波函数、不确定性原理、薛定谔方程。应用于:方阱势、单电子原子。原子核、裂变和聚变。周期性晶格中的能带、Kronig Penney 模型、价带、导带、杂质态、电子迁移率。半导体特性。超导简介;电子对、能隙、约瑟夫森效应。| 先决条件:PH-UY 2023;共同要求:PH-UY 2033 和 MA-UY 2034。评分:Ugrd Tandon 评分可重复获得额外学分:否
TGD 导致了 [46, 56] 中讨论的两种关于物理学的观点。在第一种观点 [14, 13, 17] 中,物理学被视为时空几何,在 H = M 4 × CP 2 中被确定为 4 曲面,在更抽象的层面上,物理学是“经典世界的世界”(WCW)的几何,由基本作用原理的优选极值(PE)空间组成,将玻尔轨道的类似物定义为具有奇点的极小曲面。在第二种观点 [29] 中,物理学被简化为数论概念,类似于动量空间的 M 8 中的 4 曲面定义了基本对象。类似于动量位置对偶的 M 8 − H 对偶 [42, 43] 将这两种观点联系起来。 M 8 c (复数 M 8 ) 中的 4 曲面,可解释为复数八元数,它们必须是结合的,即它们的法向空间是四元的。对于给定的时空区域,它们由实参数多项式 P 的根延至 M 8 c 中的多项式来确定。这些根定义了 M 4 c ⊂ M 8 c 的质量壳层集合,通过全息术,它们定义了 H 的 4 维表面。H 级的作用原理由 TGD 的扭转升力决定,是 4-DK¨ahler 作用与体积项 (宇宙常数) 之和。它不是完全确定性的,H 中作为 PE 的时空曲面与玻尔轨道类似,可视为具有框架的肥皂膜的类似物,对应于确定性失效的奇点。除了由 P 的根确定的光骨架本时 a = an 对应的双曲 3 曲面外,框架还提供额外的全息数据。框架包括部分子 2 曲面的类光轨道和连接它们的弦世界面。新颖之处在于,与零能量本体论 (ZEO) [33] 一致的是,类空间数据对于全息术来说是不够的,还需要类时间数据,而弦世界面对于编织和 TQC 来说是绝对必要的。
量子力学 (QM) 的起源可以追溯到 1900 年,当时马克斯·普朗克引入了作用量子,并因此提出了离散能量的非经典概念。1905 年,阿尔伯特·爱因斯坦成功应用量子假设解释光电效应,1913 年尼尔斯·玻尔发展了氢原子模型,此后,维尔纳·海森堡得以发展一种封闭、一致且连贯的数学形式,能够以不变的方式解释实验室中实际观察到的线强度。玻恩和约当认识到海森堡使用的密集数据表实际上是矩阵,而奇怪的乘法规则则揭示了它们的非交换结构。事实上,在寻找描述量子的方法时,海森堡重新发现了一个众所周知的数学领域,即矩阵代数。因此,让我们首先介绍一些有关矩阵的概念和定义。 n × n 复数矩阵是 n × n 个复数的数组。2 × 2 实数矩阵的示例为 1 3 2 − 1
1 Quantum设备中心,Niels Bohr Institute,哥本哈根大学,2100哥本哈根,丹麦2号哥本哈根2洛伦兹研究所和莱顿高级计算机科学研究所,莱顿大学,P.O。Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907
解释了解波颗粒双重性的量子力学,量子力学的必要性探索亚原子颗粒的行为。Schroedinger的时间独立波方程,波函数的物理意义 - Schroedinger波方程的应用。了解正常光,激光及其应用的基本概念,并了解光纤,原理(TIR),数值孔径,光纤类型,STEP索引和分级索引纤维,光纤纤维中的衰减。应用:光纤通信系统,光纤传感器,医疗内窥镜检查。研究磁性和超导性的概念,Bohr Magneton,滞后性质,域结构,Meissner效应,超导体的类型,BCS理论和超导体的应用。了解电介质,极化及其类型的概念,内部场,克劳西乌斯 - 摩塞蒂方程,频率和温度对电介质及其应用的影响 - 压电电性,pyro-电动性和铁电性。了解半导体,类型,载体浓度,热敏电阻,霍尔效应,以及了解PN结构的概念,I-V特征,LED,太阳能电池和照片二极管。讨论纳米技术,制备技术和表征(XRD,SEM和TEM),CNT,并了解放射性及其应用的基础。
量子点是零维纳米材料,尺寸范围为 1 至 20 纳米,与激子的玻尔半径相当,并产生三维量子限制效应。限制电子在三维空间中的运动使量子点的电子结构与原子相似,这就是为什么一些专家称量子点为“人造原子” [1, 2]。量子点因其独特的电、光、电化学和物理化学特性而成为细胞生物成像中的造影剂和用于治疗目的的纳米载体 [2-4]。检测纳米载体进入细胞及其与细胞过程的相互作用是药物发现和开发新型药物输送系统的关键点 [2]。量子点的荧光特性使追踪纳米载体和分子机制成为可能,以便通过药物或基因治疗进行诊断和治疗应用[5]。量子点
Dabbar 先生自 2021 年起担任 Bohr Quantum Technology Corp. 的联合创始人兼首席执行官,该公司为新兴的量子互联网开发和部署量子信息技术。此前,他于 2017 年至 2021 年担任美国能源部 (DOE) 负责科学的能源部副部长。在担任能源部职务之前,Dabbar 先生是摩根大通的高级投资银行家,在所有能源领域都有丰富的交易经验。此外,他还担任摩根大通大宗商品交易业务的高级领导职务,包括电力、石油和天然气。Dabbar 先生还曾担任核潜艇 USS Pintado 上的美国海军军官。他是美国外交关系委员会成员,并曾在能源部研究和技术投资委员会、国家科学技术委员会、曼哈顿计划国家公园、能源存储大挑战和能源部环境管理委员会的董事会任职。他还是哥伦比亚大学全球能源政策中心的高级研究学者。 Dabbar 先生在美国海军学院获得本科学位,在哥伦比亚大学获得工商管理硕士学位,并毕业于美国海军核动力和工程师项目。2024 年 3 月
1。简介:针对高性能计算(HPC)和数据中心市场的异质整合半导体设备的需求始终代表了设备和过程技术中普遍存在的最先进。这些细分市场的需求通常要求达到最高的处理率,最高的沟通速率(低潜伏期和高带宽,通常是同时同时同时使用这些)和最高的能力,并且对包装的极端要求,以满足互连需求和更高的功率散失。这是一种趋势,它很可能会随着HPC系统和数据中心的各种应用而持续,近年来已经出现了。术语chiplet已用于描述与包装中其他此类模具(或chiplets)集成的模具。替代术语dielet也被同义用作chiplet。在本章中,这些术语可互换使用。顺便说一句,值得注意的是,chiplet一词严格意味着不一定独立的功能性芯片的一部分。在使用该术语的方式中,chiplet可以是一个完全运行的模具,例如HBM堆栈或多核CPU。在当前用途时,chiplet一词用于指代术语的严格含义,指代零件或整个功能性芯片。本章合理化了对实现HPC和数据中心市场的系统集成系统集成的明确需求,并确定了潜在的解决方案以及在实现这些SIP时遇到的潜在解决方案以及短期,中期和长期挑战。尽管与过去一样,处理器 - 内存性能差距仍然是整个系统体系结构的关键驱动力,但推动HPC和数据中心市场中异质集成需求的新因素已经出现。这些包括技术局限性,新的和新兴的应用程序以及缩放需求,以克服功率耗散,功率输送和包装IO约束。这些需求及其含义将在下面检查。1.1过去的尺寸限制,技术节点(功能尺寸)一直是特定一代主流CMOS技术的代表,并且在引入后的18至24个月内,新技术超过了最新的技术。近年来,作为特征大小缩减的节点实际上涵盖了几个连续的技术一代,其特征是通过过程优化和电路重新设计在节点内实现的电路元素的缩小尺寸。因此,一个节点已经开始持续数年,但实际上使缩小电路元素的扩展能够继续通过这些创新(称为“超级标准” [BOHR 17]),以相对固定的特征大小。近年来已经成立的共识是使用技术缩放度量指标,该指标代表某些基本电路元素(例如Nand Gates或Scan Flip-Flops [BOHR 17]或其他特定于供应商[LU 17])的技术规模。使用
1。简介:针对高性能计算(HPC)和数据中心市场的异质整合半导体设备的需求始终代表了设备和过程技术中普遍存在的最先进。这些细分市场的需求通常要求达到最高的处理率,最高的沟通速率(低潜伏期和高带宽,通常是同时同时同时使用这些)和最高的能力,并且对包装的极端要求,以满足互连需求和更高的功率散失。这是一种趋势,它很可能会随着HPC系统和数据中心的各种应用而持续,近年来已经出现了。本章合理化了对实现HPC和数据中心市场的系统集成系统集成的明确需求,并确定了潜在的解决方案以及在实现这些SIP时遇到的潜在解决方案以及短期,中期和长期挑战。异质系统集成使用多个模具及其互连实现了SIP。术语chiplet已用于描述与包装中其他此类模具(或chiplets)集成的模具。替代术语dielet也被同义用作chiplet。在本章中,这些术语可互换使用。顺便说一句,值得注意的是,chiplet一词严格意味着不一定独立的功能性芯片的一部分。在使用该术语的方式中,chiplet可以是一个完全运行的模具,例如HBM堆栈或多核CPU。在当前用途时,chiplet一词用于指代术语的严格含义,指代零件或整个功能性芯片。尽管与过去一样,处理器内存性能差距仍然是整个系统体系结构的关键驱动力,但推动HPC和数据中心市场中异质集成需求的新因素已经出现。这些包括技术局限性,新的和新兴的应用程序以及缩放需求,以克服功率耗散,功率输送和包装IO约束。这些需求及其含义将在下面检查。1.1过去的尺寸限制,技术节点(功能尺寸)一直是特定一代主流CMOS技术的代表,并且在引入后的18至24个月内,新技术超过了最新的技术。近年来,随着特征大小的缩减,一个节点实际上涵盖了几个连续的技术一代,这些技术是通过过程优化和电路重新设计在节点内实现的电路元素的缩小尺寸的特征。因此,一个节点已经开始持续数年,但实际上使缩小电路元素的扩展能够继续通过这些创新(称为“超级标准” [BOHR 17]),以相对固定的特征大小。近年来已经成立的共识是使用技术缩放度量指标,该指标代表某些基本电路元素(例如Nand Gates或Scan Flip-Flops [BOHR 17]或其他特定于供应商[LU 17])的技术规模。在使用高度尺度的情况下,必须将经典生成边界重新定义为最多的
量子力学是一个美丽而迷人的理论,它经历了断断续续的发展,始于 20 世纪 00 年代,始于 20 世纪 20 年代,在 20 世纪 20 年代末逐渐成熟为现在的形式。主要由尼尔斯·玻尔和维尔纳·海森堡提出的关于量子力学含义的一系列观点被称为哥本哈根诠释 [1]。关于哥本哈根诠释到底是什么,并没有明确的历史表述。它是最古老、提出的量子力学诠释之一,其特点可以追溯到 1925 年至 1927 年量子力学的发展,而且它仍然是最常教授的诠释之一 [2]。阿尔伯特·爱因斯坦对量子力学持怀疑态度,尤其是它的哥本哈根诠释 [3]。在 1935 年 5 月 15 日出版的《物理评论》上,阿尔伯特·爱因斯坦与高等研究院的两位博士后研究员鲍里斯·波多尔斯基和内森·罗森合作撰写了一篇论文。文章的标题是《物理现实的量子力学描述可以被认为是完整的吗?》[4]。在这项研究中,三位科学家提出了一个今天被称为 EPR 悖论的思想实验,试图表明波函数给出的物理现实的量子力学描述并不完整。