1 锡瓦斯科技大学农业科学与技术学院,锡瓦斯,土耳其,2 丘库罗瓦大学农业学院大田作物系,阿达纳,土耳其,3 东地中海农业研究所,阿达纳,土耳其,4 国际半干旱热带作物研究所,海得拉巴,特伦甘纳邦,印度,5 西开普大学生物技术系植物抗逆实验室,贝尔维尔,南非,6 西开普大学 DSI-NRF 食品安全卓越中心,贝尔维尔,南非,7 济州国立大学植物资源与环境系,济州,韩国,8 托木斯克国立大学高级工程学院(农业生物技术),托木斯克,俄罗斯,9 克尔克孜尔·埃夫兰大学 Ziraat Fakultesi Tarla Bitkileri Bolumu,克尔克孜尔·埃夫兰大学 Ziraat Fakultesi Tarla Bitkileri Bolumu,土耳其,10 韩国济州国立大学亚热带园艺研究所
直到 20 世纪,自发突变都是人类在选择适合驯化和育种的植物和动物时可以利用的新遗传多样性的唯一来源。当人们发现电离辐射可以改变生物体的遗传组成时,植物育种迎来了飞跃。LJ Stadler 在 20 世纪 20 年代末的开创性工作标志着植物突变育种的开始,尽管 Stadler 本人对其实际价值并不乐观。直到 1964 年粮农组织/国际原子能机构食品和农业核技术联合司成立,并发挥全球协调和协同作用,植物突变育种才成为全球植物育种者可用的常用工具。自成立以来,联合司继续在促进粮农组织和国际原子能机构成员国使用突变技术改良作物方面发挥着重要作用。它通过协调和支持研究、促进能力建设和技术转让、提供技术服务和政策建议以及收集、分析和传播信息来实现这一目标。截至 2009 年底,全球正式发布的突变品种数量已达到 3,088 个,而 1964 年仅有 77 个。联合处的早期举措是编纂《突变育种手册》,该手册由国际原子能机构于 1975 年出版,1977 年出版第二版。该手册随后被翻译成多种语言,并被广泛接受。
如果要在气候变化的背景下满足世界对粮食和饲料生产的需求,就必须继续了解和利用作物变异的遗传和表观遗传来源。传统上,人们认为植物育种的进步是由于选择了赋予理想表型的自发 DNA 序列突变。这些自发突变可以扩大表型多样性,育种者可以从中选择农学上有用的性状。然而,很明显,即使基因组序列没有改变,也可以产生表型多样性。表观遗传基因调控是一种在不改变 DNA 序列的情况下调控基因组表达的机制。随着高通量 DNA 测序仪的发展,分析整个基因组的表观遗传状态(称为表观基因组)已成为可能。这些技术使我们能够高通量地识别自发表观遗传突变(表观突变),并识别导致表型多样性增加的表观突变。这些表观突变可以产生新的表型,而致病表观突变可以代代相传。有证据表明,所选的农艺性状受可遗传的表观突变所制约,而育种者可能历来都会选择受表观等位基因制约的农艺性状。这些结果表明,不仅 DNA 序列多样性,而且表观遗传状态的多样性都可以增加表型多样性。然而,由于表观等位基因的诱导和传播方式及其稳定性与遗传等位基因不同,传统定义的遗传的重要性也不同。例如,对作物育种和作物生产重要的表观遗传类型可能存在差异。前者可能更多地依赖于长期遗传,而后者可能只是利用短期现象。随着我们对表观遗传学理解的不断进步,表观遗传学可能为作物改良带来新的视角,例如在育种中使用表观遗传变异或表观基因组编辑。在这篇评论中,我们将介绍表观遗传变异在植物育种中的作用,主要关注 DNA 甲基化,最后询问表观遗传学在作物育种中的新知识在多大程度上导致了其成功应用的记录案例。
ICFRE森林遗传学和树木育种,符合了一本关于“适合泰米尔纳德邦农林业系统的树种”的书。This book contains the complete information on particular tree species, weather and climatic condition for better growth, seed processing and germination techniques, quality seedling production, planting technique including spacing, weeding, irrigation pattern, fertilizer application, pest and disease control, growth and yield for economically important tree species viz., Casuarina, Sandal, Teak, Red Sanders, Mahogany, Ailanthus, Gmelina, etc.ICFRE-IFGTB的高级科学家分享了树种的详细信息,以汇编本书。此外,还包括有关主要害虫和疾病症状的一个特殊章节,以及托儿所和种植园中的控制措施。根据泰米尔纳德邦生物多样性和绿化计划的特别要求,TNFD提出了该出版物,这本书对于参与农民领域的农业库存系统的TNFD的树木种植者和TNFD的员工将非常有用。
豆类是重要的农作物,主要用于其谷物,富含蛋白质,矿物质和其他营养素,例如维生素,泡沫和抗氧化剂。豆类主要是自授粉的农作物,这意味着它们具有狭窄的遗传基础,这对作物改善计划构成了挑战。仍然,常规和现代繁殖方法在改善豆类作物的农艺特征,胁迫耐受性和营养品质方面显着贡献。传统的繁殖涉及将植物繁殖物暴露于诱变剂和/或越过两种或更多植物以产生具有所需特征的新一代,而现代育种方法包括分子育种,标记辅助选择和基因工程技术。通过这些方法,研究人员能够开发出提高产量,抗病性,耐旱性和营养品质(例如较高的蛋白质含量,铁,锌和其他必需微量营养素)的豆类品种。两种常规的现代繁殖方法在谷物作物中都取得了很大的成功,并且很少关注豆科农作物的改善。主要和未充分利用的豆类作物的遗传改善仍然是实现全球粮食安全和营养目标的主要挑战。该研究主题在遗传学领域的题为“过渡中的豆类育种:创新和前景”的遗传学主题介绍了一系列研究文章和评论,涵盖了种质多样性,转录组学,测序,基因组学,标记物,基因组繁殖,基因组繁殖,基因研究,基因学习algormity Algormits和Agrymits的新理解。
例如负责耐旱性的基因,并将其插入目标植物的基因组中,从而产生转基因生物(或 LMO)。使用物理方法或经过修饰的病毒或细菌来插入基因,限制了科学家对基因插入位置或基因是否成功表达(即产生的植物更耐旱)的控制。
气候变化是对全球农作物生产力降低的全球粮食安全的威胁。粮食安全是利益相关者和政策制定者的关注问题,因为预计未来几年全球人口将绕过100亿。通过现代育种技术改进作物,以及微生物组应用中有效的农艺实践,并利用未充分利用的农作物的自然变化是满足未来食物需求的绝佳方法。在这篇评论中,我们描述了下一代繁殖工具,可通过开发气候富裕的优越基因型来应对全球粮食安全的未来挑战,可用于增加农作物的产量。基因组辅助育种(GAB)策略的最新创新允许建立高度注释的作物泛基因组,可以捕捉遗传多样性(GD)的完整景观(GD),并重新接收一种物种的丢失的基因库。Pan-genomes提供了新的平台来利用这些独特的基因或遗传变异来优化育种计划。下一代定期间隔短的短篇小说重复/CRISPR相关(CRISPR/CAS)系统的出现,例如主要的编辑,基础编辑和DE NOVA驯化,已经制度化了基因组编辑的想法,即对作物的改进进行了改进。此外,包括Cas9,cas12,cas13和cas14在内的多功能CAS直系同源物的可用性提高了编辑效率。现在,CRISPR/CAS系统在作物研究中有许多应用,并成功地编辑了主要农作物,以产生对非生物和生物压力的抗性。通过采用高通量表型方法和大数据分析工具,例如人工智能(AI)和机器学习(ML),农业正朝着自动化或数字化方向发展。将速度育种与基因组和现象工具的整合可以允许快速基因识别,并最终加速作物改善计划。此外,下一代多学科繁殖平台的整合可以开放令人兴奋的途径,以开发出适合全球粮食安全的气候就绪农作物。
在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。