CMOS晶体管的紧凑建模是硅制造和电路仿真之间的重要桥梁[1]。为了捕捉器件物理的复杂性,必须在紧凑模型中引入越来越多的模型参数,这对参数提取和仿真效率提出了巨大挑战。为了提取CMOS晶体管的模型参数,已经提出了一种基于机器学习的方法[2,3]。此外,人工神经网络(ANN)已用于通用晶体管行为的紧凑建模[4,5]。然而,由于没有明确的物理意义,这种人工神经网络(ANN)会阻碍模型的可扩展性和效率。因此,开发一种紧凑、可扩展、计算高效的CMOS晶体管模型势在必行。
图1:具有标准钝化为离子敏感层的CMOS ISFET,信号转换的扩展门电极和下方的MOSFET,对氢离子(H +)敏感。H +的吸附或释放改变了闸门的电池,这会改变源和排水之间的电流。因此,可以测量与与表面结合的H +离子成正比的电信号变化。与可自定义的特殊过程相比,标准CMOS流程中的ISFET可以开发和制造更具成本效益。,这也面临着几个挑战:首先,作为离子敏感层的标准钝化会引起对最大斜率的敏感性,因为在25°C时NERNST的59 mV/pH值和信号漂移中的59 mV/pH值。此外,ISFET的操作点移动和
摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
然而,仅靠基本规则的缩放不足以降低单元高度。要完成这项任务,必须将设计缩放因子付诸实践。例如,通过缩放标准单元中有源器件的数量/宽度以及缩放次要规则(如尖端到尖端、扩展、PN 分离等),标准单元高度将进一步降低。然而,压缩逻辑单元的有源区域部分将使其他设计规则成为设计缩放的瓶颈。为了规避这些问题,有人建议减少或实际上消除为电源轨保留的区域,方法是将其从晶圆正面移到器件接触层下方,以将其分配给额外的单元内布线[1][2]以及在 N/P 上堆叠 P/N 器件[3]。图 MM-3 显示了 2025 年标准单元缩放的趋势。
摘要:集成光子设备的商业生产受所需材料平台的可扩展性的限制。我们探索了一个相对较新的光子构造ALSCN,因为它在电形相移和调制中的使用。其CMOS兼容性可以促进集成光子调节剂的大规模产生,并且与固有的ALN相比,它表现出增强的二阶光学非线性,表明有效调节的可能性。在这里,我们测量了0.80 SC 0.20 N基相位变速器中的电磁效应。我们利用了TM0模式,允许使用R 33电磁系数,并在750 V cm左右证明了V𝜋L。由于电位响应比预期的要小,因此我们讨论了基于ALSCN的光子学的响应减少和未来前景的潜力原因。
摘要:节能功率放大器 (PA) 可以延长电池寿命,同时又不牺牲线性度,对移动设备来说越来越重要。包络跟踪 (ET) 设计中的电源调制器会影响射频 (RF) PA 的效率提升。本文介绍了一种基于比较器的电源调制器的设计,该调制器可动态控制驱动 PA 所需的电源电压。 前置放大器被设计用于放大 RF 输入信号,包络检测器在比较器的 0 - 3.3 V 摆幅范围内跟踪放大信号。 单位比较器被设计为工作在 2.1 GHz 频率下,最小上升时间延迟为 0.2 ns,并且它被级联以用作 8 位比较器。多级电源调制器接收来自 8 位比较器的输入。这通过限制流过由比较器关闭的晶体管的电流来确定流向 PA 的电流量。因此,基于比较器的包络跟踪系统旨在设计 ET 电路并将功率附加效率提高到大约 45%。此外,ET 电路不包含电感器等笨重元件,因此预计会占用较少的芯片面积。
光接收器的性能受到互补金属氧化物半导体 (CMOS) 运算放大器 (op-amps) 设计的显著影响,这种设计受益于 CMOS 技术的进步,可降低噪声和功耗。本研究概述了低噪声 CMOS 运算放大器的设计过程,旨在实现高质量的信号输出,这对于必须尽量减少噪声干扰的专业音频设备和精密仪器等应用至关重要。通常,降低噪声的努力会导致速度降低和功耗增加。因此,实现性能参数的最佳平衡至关重要,噪声水平是主要关注点。提出了一种有效的设计方法来提高运算放大器的整体性能。采用分析方法来深入了解设计,优先考虑噪声性能。设备尺寸和偏置条件是根据噪声水平、带宽、信号摆幅、斜率和功耗等几个因素确定的。已经开发了一个两级运算放大器来验证所提出的设计方法。通过该方法得出的器件参数与使用 MATLAB 生成的模拟结果非常吻合,强调了设计过程的准确性和有效性。
电子和通信等各个领域对高性能折叠共源共栅 CMOS OTA 的需求日益增长,要求它们具有宽带宽、高电压增益、紧凑设备和低功耗的特点。最近的研究表明,实施水循环算法 (WCA) 可以大大提高折叠共源共栅 CMOS 运算跨导放大器 (OTA) 的性能。这是因为 WCA 能够有效地执行全局搜索和局部探索。值得注意的是,所讨论的 OTA 采用 0.18µm TSMC 技术构建,工作电压为 ±1.8V。模拟结果是使用 PSPICE 软件 (版本 17.4) 收集的。这些设计解决方案表现出卓越的效率,可提供显着的放大、高频率和最低功耗。此外,本文还利用水循环算法演示了折叠共源共栅 CMOS 运算跨导放大器的实现和仿真结果,为此使用了 MATLAB。在折叠共源共栅 CMOS OTA 的 OTA 设计中使用 WCA 可显著提高性能指标。与无算法设计相比,电压增益显著增加,增益带宽增加了五倍。此外,与非 WCA 折叠共源共栅 CMOS OTA 设计相比,功耗降低了 15.5%,共模抑制比提高了 15.18%。结果突出了 WCA 技术作为一种强大的优化策略的有效性,可以提高折叠共源共栅 CMOS OTA 的性能。
Ingle-Event Latchup(SEL)仍然是在高辐射环境中自信使用最先进的微电子的持久且困难的障碍。即使是主要在互补的金属氧化物半导体(CMOS)中未制造的部分,由于CMOS控制逻辑,输入输出(IO)等,也可能很脆弱。通过先验预测提高赔率已被证明很困难,因为在供应商,过程,功能等方面没有一致的趋势。[1-7]。用质子筛选(用于揭示常见的非破坏性单事件效应(见)[8])通常是由于质子后坐离子的短范围和典型的SEL [9-12]的深敏感体积(SV)而无效。预测SEL易感性的困难是不幸的,因为SEL行为是高度可变的,并且可能对部分和系统可靠性构成重大威胁。大约一半的CMOS零件易感性,在这些部分中有50%可以具有破坏性[4]。sel费率在6个以上的数量级上有所不同,其中几个零件