摘要 - 杂化结构电子(HSE)由印刷的电子设备,常规的刚性电子设备和负载轴承支撑一部分设备的部分(塑料,玻璃等)。超大区域和带有嵌入的光发射二极管(LED)的柔性照明元件是此类应用的一个例子。可以使用LED,例如作为用于建筑或汽车行业的智能表面的光源。一旦LED嵌入到结构中,就无法更换它们。为了使可持续的HSE产品具有长寿,需要新的设计类型。HSE的元素在运行时经历具有升高热应力的条件。众所周知,这会影响其性能和寿命,从而对LED至关重要。由于新型的添加剂制造方法,结构和非常规的材料组合,许多与热管理相关的方面尚不清楚。在这项研究中,一种两步混合方法,包括热建模和测量,用于估计在HSE中使用的聚合物底物上固定的表面固定的LED的热行为。该模型是在Comsol多物理学中创建和模拟的。通过用热瞬态测量测量测量,模型热行为的有效性和准确性得到了验证。基于实验验证,与测量相比,提出的仿真模型仅具有小(小于2%)的温度变化。因此,开发的模型可以用作设计结构LED元素并在不同用户案例中预测其性能特征的基础。
简介:轻度创伤性脑损伤 (mTBI) 是一种常见损伤,仅在美国每年就有近 300 万至 400 万例。对 mTBI 患者进行神经影像学检查几乎没有什么用处,而且通常不需要进行检查,因为诊断主要是临床诊断。理论上,mTBI 中可能存在脑微血管创伤,而常规 MRI 和 CT 扫描可能无法捕捉到这些创伤。电磁 (EM) 波可能是一种更灵敏的医学成像方式,可为 mTBI 诊断提供客观数据。方法:利用 COMSOL 仿真软件模拟人类头骨的解剖结构,包括皮肤、颅骨、脑脊液 (CSF)、脑灰质组织和神经组织内的微血管。使用有限元分析软件模拟穿透电磁波的影响,并生成结果以确定可行性和有效性。考虑的频率范围为 7 GHz 至 15 GHz,应用 0.6 和 1 W 功率。结果:不同频率水平之间的变化在神经组织内产生不同的能量水平——特别是在比较正常微血管与微血管出血时。随后通过模拟确定了神经组织内的这种差异,作为未来工作的潜在成像方式。结论:脑震荡事件后使用电磁成像对未来的 mTBI 诊断可能发挥作用。利用适当的深度频率和波长,可以利用有限元分析识别神经组织和微血管创伤。
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。
扫描电子显微镜与能量色散 X 射线光谱法 (SEM-EDS) 相结合是一种应用广泛的元素微分析方法。硅漂移探测器 (SDD) 的集成显著增强了 EDS 性能,由于其灵敏面积大、输出电容低,因此能够精确识别元素。对 SDD 的精确模拟可以提供洞察力,使未来模型的设计和优化成为可能,而无需昂贵且耗时的实验迭代。此外,当前基于模型的 EDS 应用量化方法已达到其最大预测精度。因此,创建更精确的模拟模型可以帮助在这些量化模型中实现更高的精度,这对所有 EDS 应用都具有极大的价值。考虑到这一目标,基于 Geant4、Allpix Squared 和 COMSOL Multiphysics 开发了一个用于在 EDS 中建模 SDD 的模拟框架。模拟涵盖整个物理流程,包括目标样品的特征 X 射线发射及其在探测器中的吸收。探测器内产生的电荷载体通过 SDD 的内部电场传播,并测量它们各自的电荷贡献以模拟 EDS 光谱。模拟模型与现有文献和内部实验测量结果进行了比较,在 SDD 调整良好的情况下显示出很强的一致性。讨论了模拟框架的局限性,并探索了进一步的研究以提高准确性和速度。关键词:X 射线光谱、硅漂移探测器、扫描电子显微镜、探测器模拟
摘要 — 大脑微运动是导致植入式神经接口失败的主要原因。有两种方法可以有效减少大脑微运动和组织损伤:(i)缩小植入式装置占地面积和(ii)选择柔性材料作为装置基板。为了满足这些要求,在本文中,我们使用 COMSOL Multiphysics 中的有限元法执行了两组建模。首先,我们对不同尺寸的不同材料(从硬材料(例如硅)到非常软的材料(例如 PDMS))的性能进行建模,以找到微探针的最佳尺寸和材料。对于装置尺寸优化,主要自由度是厚度,而最小柄宽度和长度分别取决于记录位置和目标记录点。基于不同基板对具有不同厚度(50 - 200 μm)和固定柄宽度(100 µm)的装置进行建模,我们表明,基于聚酰亚胺的微探针的安全系数为 5 到 15,最大冯·米塞斯应力为 248-770 MPa。此外,模拟表明,厚度为 50 μm 的聚酰亚胺基微探针,其安全系数为 5,应力为 248 MPa,在尺寸和材料方面提供了最佳解决方案。其次,为了分析设备形状因子,我们根据获得的最佳设计对不同的布局进行建模,发现最佳布局的冯·米塞斯应力为 134.123 MPa,用途广泛,适合用作微探针,尤其是用于缓解脑微运动的影响。关键词——脑植入装置、脑微运动、设备建模、小型化、机械灵活性、形状因子。
住宅部门负责欧盟最终能源消耗的26%。减少家用化石燃料使用的关键策略是带有季节性热能储存的太阳能区供暖。尽管该技术已在北欧(瑞典,丹麦和德国)广泛应用,但在意大利尚未实施。本研究提出了一种新的数值工具,并将其应用于意大利城市佛罗伦萨的复制项目,该项目是根据Horizon 2020 Smart Cities and Communities Initiative资助的。我们的新颖工具基于一个动态模型,加上有限元方法,已开发出指导区域加热厂的设计并获得可靠的性能估计,尤其是存储热损失。总体目的是减少过去项目表征的预测不正确。最终动态模型是在TRNSYS中实现的,并可以选择主要的工厂参数并定义控制策略。它与ComsolMultiphysics®开发的详细传热模型有关,该模型可以计算存储热损失并确定绝缘材料的最佳厚度。我们的深入参数研究确定热水罐的最佳体积为3800 m 3,太阳能场的大小为1000 m 2。我们还评估了加水 - 水热泵的有效性。此分析发现它是一个至关重要的组成部分,因为它可以提高存储容量并提高太阳能收集器的性能,最多可提高124 MWH。我们的结果表明,通过优化的配置,系统的太阳分数可以达到44%。
3D Innovation Co.,Ltd Abel Co.,Ltd Acteskyosan Inc。 <位置> ADACHI新工业公司,有限公司 adloptica光学系统GMBH 高级通信媒体有限公司,有限公司 agc inc. agilent Technologies Japan,Ltd. Ltd. aim aim aim Co. Akitech Leo Inc。 Alnair Labs Corporation Alt Inc. Altechna Alxis Data,Inc。 Amakusa Optical Co,Ltd Ametek Co. Anhui Crystro Crystal Materials Co.,Ltd. Anritsu Corporation Ansys Japan K.K.APL Machine Industrial Co。,Ltd。 Aptus Corporation Archer Optx,Inc。 Artray Co。,Ltd Asahi Diamond Industrial Co.,Ltd. asahi Rubber Inc. sahi Rubber Inc。Askk Co。,Ltd。 Asphericon GMBH <激光>创新光学技术协会 Autex,Inc。 aval Data Corporation AYASE CO. BOOK Fair BPF laser innovation corporation Broadcom Inc. / Silicon Technology Co., Ltd. Bunkoukeiki Co., Ltd. Camerium Inc. Canare Electric Co., Ltd. Canon Marketing Japan Inc. CARLBASSON CO., LTD. Castech Inc. CBC Optics Co.,Ltd. CBS Japan Japan> Ceratech Japan Japan Co。Co., Ltd. Changchun Worldhawk Optoelectronics Co., Ltd. Chroma Technology Japan CHRONIX Inc. Chuo Precision Industrial Co., Ltd. CIOE - China International Optoelectronic Exposition Circle & Square Co., Ltd. COMSOL G.K. 可见光激光二极管应用程序 Coremorrow Ltd. <位置>工艺中心Sawaki Inc. <激光>
水生细菌对人体健康构成严重危害,因此需要一种精确的检测方法来识别它们。一种考虑到水生细菌危害的光子晶体光纤传感器已被提出,并且其在 THz 范围内的光学特性已被定量评估。PCF 传感器的设计和检查是在使用“有限元法”(FEM) 方法的程序 Comsol Multiphysics 中计算的。在 3.2 THz 工作频率下,所提出的传感器在所有测试情况下的表现都优于其他传感器,对霍乱弧菌的灵敏度高达 96.78%,对大肠杆菌的灵敏度高达 97.54%,对炭疽芽孢杆菌的灵敏度高达 97.40%。它还具有非常低的 CL,对于霍乱弧菌为 2.095 × 10 −13 dB/cm,对于大肠杆菌为 4.411 × 10 −11 dB/cm,对于炭疽芽孢杆菌为 1.355 × 10 −11 dB/ cm。现有架构有可能高效且可扩展地生产传感器,为商业应用打开大门。创新在于优化结构参数,以提高光纤对细菌存在的敏感性,从而改善太赫兹波和细菌细胞之间的相互作用。它针对细菌大分子吸收峰来提高灵敏度。局部场增强可能来自优化,它将 THz 振动集中在细菌相互作用更多的地方。通过改善散射,结构改变可以帮助通过细菌特征性的散射模式识别细菌。这些改进提高了传感器对痕量细菌的检测。这些因素结合起来可提高传感器对水生细菌的检测能力。在水环境中,这将带来更精确、更高效的检测,有助于实时监测细菌污染。这些发展可能会对公共卫生和水质控制产生重大影响。
纳米光子学利用了最佳的光子学和纳米技术,近年来通过允许亚波长度结构来增强光 - 物质相互作用,从而改变了光学技术。尽管这些突破,设计,制造和这种异国情调的设备的表征仍然存在通过迭代过程,这些过程通常在计算上是昂贵,内存密集和耗时的。相比之下,深度学习方法最近显示出出色的表现作为实用的计算工具,为加速此类纳米光子学模拟提供了替代的途径。本研究通过掌握独立的纳米结构属性及其相应的光学响应之间的隐藏相关性,提出了用于传播,反射和吸收光谱预测的DNN框架。所提出的DNN框架被证明需要足够数量的训练数据,以实现从计算模型中得出的光学性能的准确近似。全面训练的框架可以在计算成本上使用三个数量级来超越传统的EM解决方案。此外,提出的DNN框架采用了深度学习方法,努力优化影响纳米结构的几何维度的设计元素,从而深入了解纳米级的通用传播,反射和吸收光谱预测。此范式提高了复杂的纳米结构设计和分析的生存能力,并且它具有许多潜在的应用,涉及纳米结构与电磁场之间的异国情调的光 - 物质相互作用。在计算时间方面,与常规FEM方法相比,设计算法的速度快700倍以上(使用手动网格划分时)。因此,这种方法为快速而通用的方法铺平了道路,以表征和分析纳米光系统的光学响应。
鉴于国际能源机构(IEA)2020特别报告,该报告估计全球二氧化碳(CO 2)存储的能力在8,000至55,000千兆的范围内,这是提高碳存储效率并开发出色分销系统的必要性。本研究的重点是通过全面的系统分析优化基于吸附的碳储存单元,在Comsol Multi-physics™框架中采用有限元方法,以根据热力学约束来整合能量,质量和动量保护原理的能量,质量和动量保护原理。分析需要在指定的压力为9 MPa和302 K的初始温度下检查存储单元的充电和放电过程,并用冰水提供冷藏。从模拟中发现的结果强调了在操作阶段观察压力和温度波动的重要性,显示出充电周期结束时储罐中部区域的温度较高,与排放完成后温度较低相比。此外,观察到速度的梯度,从沿储罐轴的入口点下降。该研究强调了存储CO 2的可行性明显高于IEA到2055年IEA“可持续发展”方案所预测的100 GT,而陆上存储的可能性可能超过近海能力。研究通过在整个吸附 - 吸附周期中为新颖的CO 2吸附剂开发预测模型,涵盖所有相关的运输现象。该模型可针对H 2存储的现有数据验证,从而促进了不同储罐位置的压力和温度变化的预测。这项工作不仅通过增强对碳储存单元内热效应的理解的理解,而且还强调了高级建模技术在通过改进的液体碳存储解决方案来加强环境保护工作中的作用。