ARS-COV-2是冠状病毒疾病2019(COVID-19)大流行的病因学药。SARS-COV-2是在2002 - 2003年SARS-COV-1之后的第21世纪越过物种障碍的第三个高度致病性冠状病毒(参考文献。1 - 3)和2012年的MERS-COV(参考4)。已知另外四个HCOV(HCOV-229E,HCOV-NL63,HCOV-OC43和HCOV-HKU1)在人类的季节性循环中循环,大约有三分之一的常见冷感染感染5。像SARS-COV-1和HCOV-NL63一样,SARS-COV-2进入靶细胞的进入是由血管紧张素转化酶2(ACE2)受体6-10介导的。SARS-COV-1和SARS-COV-2使用细胞丝氨酸蛋白酶跨膜蛋白酶丝氨酸2(TMPRSS2)用于质膜6,11的尖峰蛋白启动。组织蛋白酶还参与SARS-COV峰蛋白裂解和融合肽暴露于进入时(参考文献。12 - 15)。已经报道了几个用于鉴定冠状病毒调节剂的全基因组KO CRISPR屏幕16 - 21。这些屏幕使用肾脏起源的自然允许的Simian Vero E6细胞20;肝脏起源的人类HuH7细胞(或衍生物)(非定位表达ACE2和TMPRSS2)16、18、19;和A549肺部的细胞,异位表达ACE2 17,21。在这里,我们进行了全基因组,功能丧失的CRISPR KO屏幕和功能获得的CRISPRA屏幕,包括生理学上
丝状真菌具有产生各种具有不同生物学活性和结构(例如洛伐他汀和瑞士宁)的二级代谢产物的能力。随着后基因组时代的出现,越来越多的隐性或未表征的次级代谢物生物合成基因簇不断被发现。然而,由于长期缺乏多功能,相对简单且高度有效的遗传操纵技术,迄今为止,对工业重要的次级代谢产物的更广泛探索已经受到阻碍。随着基于CRISPR/CAS9的基因组编辑技术的出现,这一难题可能会得到缓解,因为这项先进的技术彻底改变了遗传研究,并使纤维化真菌的剥削和发现可以剥削和发现新的生物活性化合物。在这篇评论中,我们详细介绍了CRISPR/CAS9系统,并总结了CRISPR/CAS9介导的基因组编辑的最新应用。我们还介绍了CRISPR/CAS9系统的特定应用和CRISPRA在改善次级代谢物含量的改善中,并发现了新型生物活性化合物在纤维真菌中的发现,并提供了特定的例子。此外,我们强调并讨论了使用基于CRISPR/CAS9的基因组编辑技术在次生代谢物的生物合成研究中以及CRISPR/CAS9策略在明亮真菌中的未来应用中的某些挑战和确定。
CRISPR 介导的基因扰动研究的成功高度依赖于 gRNA 的质量,并且已经开发了几种工具来实现最佳的 gRNA 设计。然而,这些工具并不都适用于最新的 CRISPR 模式或核酸酶,也没有提供全面的注释方法或用于高级 CRISPR 应用的可扩展性。在这里,我们介绍了一个新的 R 包生态系统,它能够为多种 CRISPR 技术实现高效的 gRNA 设计和注释,包括 CRISPR 敲除、CRISPR 激活 CRISPR 干扰和 CRISPR 碱基编辑。核心包 crisprDesign 提供了一个全面、用户友好且统一的界面,可通过几种比对方法添加靶向和脱靶注释、丰富的基因和 SNP 注释以及十几个靶向和脱靶活动分数。这些功能适用于任何 RNA 或 DNA 靶向核酸酶,包括 Cas9、Cas12 和 Cas13。我们通过为三个案例研究设计最佳 gRNA 来说明我们工具的普遍适用性:使用碱基编辑器 BE4max 平铺 BRCA1 的 CRISPRbe 库、使用 CasRx 平铺 CD46 和 CD55 的 RNA 靶向库以及使用 CRISPRa 激活 MMP7。我们的 R 软件包套件是开源的,并通过 Bioconductor 项目部署,以方便 CRISPR 社区使用它们。
CRISPR 扰动是研究基因组功能效应的宝贵工具。然而,现有方法在研究非编码元件和遗传相互作用方面的效用有限。在这里,我们开发了一个双向表观遗传编辑系统 (CRISPRai),其中正交激活 (CRISPRa) 和抑制 (CRISPRi) 扰动同时应用于同一细胞的多个基因座。我们开发了双 gRNA 捕获单细胞 Perturb-seq 来研究两种造血谱系转录因子 SPI1 和 GATA1 之间已建立的相互作用,并发现了共同调节基因的新型上下文特定调控模式。将 CRISPRai 扩展到非编码元件,我们解决了多个增强子如何相互作用以调节 T 细胞中共同靶基因白细胞介素-2 的表达。我们发现增强子功能主要是附加的并能够对基因表达进行微调,但在基因表达控制强度方面,增强子之间存在明显的层次结构。启动子在控制基因表达方面比大多数增强子占主导地位;然而,一小部分增强子表现出强大的功能效应或守门人功能,尽管启动子被激活,但仍可以关闭基因。将这些功能数据与组蛋白 ChIP-seq 和 TF 基序富集相结合,表明存在多种增强子介导的基因调控模式。我们的方法 CRISPRai 用于双向表观遗传编辑,提供了一种识别新遗传相互作用的方法,这些相互作用在没有双向扰动的情况下进行研究时可能会被忽视,并且可以应用于基因和非编码元件。
CRISPR 干扰(CRISPRi)和 CRISPR 激活(CRISPRa)由于其设计简单且有效,已成为控制细菌基因表达的普遍方法。通过调节目标基因的转录,CRISPRi/a 可以动态地设计细胞代谢,实现转录调控电路,或阐明从较小的靶向文库到整个基因组文库的基因型-表型关系。虽然 CRISPRi/a 主要在模型细菌大肠杆菌和枯草芽孢杆菌中建立,但越来越多的研究表明这些工具可以扩展到其他细菌物种(这里泛指非模型细菌)。在这篇小型评论中,我们讨论了导致 CRISPRi/a 工具在不同非模型细菌中创建速度较慢的挑战,并总结了这些方法在细菌门中的现状。我们发现,尽管在非模式微生物中建立新型 CRISPRi/a 存在潜在困难,但文献中已报道了 8 个细菌门类中 190 多个近期实例。大多数研究都侧重于工具开发或使用这些 CRISPRi/a 方法来探究基因功能,而将 CRISPRi/a 基因调控应用于代谢工程或高通量筛选和选择的例子较少。迄今为止,大多数 CRISPRi/a 报告都是针对非模式细菌物种的常见菌株开发的,这表明在未驯化细菌中建立这些遗传工具仍然存在障碍。更有效和更通用的方法将有助于实现基于 CRISPR 的可编程转录控制在各种细菌中的巨大潜力。
近年来,RNA 引导的基因组编辑 (CRISPR-Cas9 技术) 的发展彻底改变了植物基因组编辑。在营养缺乏条件下,不同的转录因子和调控基因网络共同作用以维持营养稳态。提高氮 (N)、磷 (P) 和钾 (K) 的利用效率对于确保可持续产量、提高质量和抗逆性至关重要。本综述概述了适合基因组编辑的潜在目标,以了解和提高营养利用 (NtUE) 效率和营养胁迫耐受性。还描述了使用关键负调节剂和正调节剂的不同基因组编辑策略。营养信号的负调节剂是基因组编辑的潜在目标,可在资源匮乏的条件下改善营养吸收和应激信号。通过 CRISPR/dead (d) Cas9 (dCas9) 胞嘧啶和腺嘌呤碱基编辑和主要编辑进行的启动子工程是产生精确变化的成功策略。 CRISPR/dCas9 系统还具有利用转录激活因子/抑制因子以有针对性的方式过度表达目标基因的额外优势。CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 是 CRISPR 的变体,其中实现了 dCas9 依赖的转录激活或干扰。dCas9-SunTag 系统可用于设计植物中的靶向基因激活和 DNA 甲基化。通过 CRISPR-Cas 技术开发营养利用效率高的植物将加快作物营养胁迫耐受性遗传改良的速度,并提高农业的可持续性。
摘要 通过将催化失活的 Cas9 (dCas9) 与组蛋白脱乙酰酶 (Sir2a) 或乙酰转移酶 (GCN5) 的活性域融合,该 CRISPR 干扰/激活 (CRISPRi/a) 系统允许在转录水平上进行基因调控,而不会导致寄生虫基因组发生永久性变化。然而,dCas9 的组成性表达对研究必需基因构成了挑战,这可能会导致寄生虫的适应性变化,掩盖真正的表型。在这里,我们开发了一种无泄漏诱导型 CRISPRi/a 系统,通过整合 DiCre/loxP 调节子,允许在雷帕霉素瞬时诱导下表达 dCas9-GCN5/-Sir2a,这允许通过引入针对其转录起始区的向导 RNA 来方便地转录调控感兴趣的基因。利用在无性红细胞发育过程中处于沉默状态或从低水平到高水平表达的八种基因,我们评估了该系统在无性寄生虫中的稳健性和多功能性。对于大多数分析的基因,这种可诱导的 CRISPRi/a 系统导致目标基因在 mRNA 水平上上调或下调 1.5 到 3 倍。PfK13 和 PfMYST 表达的改变导致对青蒿素的敏感性改变。对于自噬相关蛋白 18(与青蒿素抗性相关的必需基因),通过可诱导的 CRISPRi/a 获得了 0.2 倍的上调或下调,导致生长迟缓。对于配子发生的主要调节器 PfAP2-G,通过 CRISPRa 获得了 0.10 倍的 PfAP2-G 转录本增加,导致。诱导寄生虫的配子体血症高出 4 倍。此外,可诱导的 CRISPRi/a 还可以调节配子体中的基因表达。这种可诱导的表观遗传调控系统为研究恶性疟原虫的基因功能提供了一种快速方法。
神经元分化是一个复杂的过程,其功能障碍会导致脑部疾病。开发新工具以针对神经元分化过程中的特定步骤至关重要,这有利于更好地理解所涉及的分子机制,并最终为神经发育障碍制定有效的治疗策略。通过与细胞外基质蛋白的相互作用,整合素家族的细胞粘附分子通过调节细胞迁移、神经突生长、树突棘形成和突触可塑性,在功能性神经元回路的形成中发挥重要作用。然而,不同的整合素受体如何促进神经元分化的连续阶段仍有待阐明。在这里,我们实施了一个 CRISPR 激活系统来增强特定整合素亚基在神经元分化的体外模型(鼠神经母细胞瘤 Neuro2a 细胞系)中的内源性表达。通过将 CRISPR 激活与形态学和 RT-qPCR 分析相结合,我们表明 α V 家族的整合素是神经元分化的强大诱导剂。此外,我们确定了 α V 整合素在控制神经突生长方面具有亚型特异性作用。虽然 α V β 3 整合素在增殖条件下启动 Neuro2a 细胞的神经元分化,但 α V β 5 整合素似乎负责促进已分化细胞中的复杂树突分化。有趣的是,原代神经元在发育过程中表现出 β 3 和 β 5 整合素亚基的互补表达模式。我们的研究结果揭示了分化过程中 α V 整合素亚型之间存在发育转换,并表明 CRISPRa 及时控制调节 α V 整合素的表达提供了一种促进神经元分化的方法。
物质使用障碍是一种慢性疾病,也是世界各地导致残疾的主要原因。NAc 是介导奖励行为的主要大脑中枢。研究表明,接触可卡因与 NAc 中等棘神经元亚型 (MSN)、多巴胺受体 1 和 2 富集的 D1-MSN 和 D2-MSN 的分子和功能失衡有关。我们之前报道过,反复接触可卡因会在 NAc D1-MSN 中诱导转录因子早期生长反应 3 (Egr3) mRNA,而在 D2-MSN 中降低该mRNA。在这里,我们报告了在雄性小鼠中反复接触可卡因会诱导 Egr3 辅阻遏物 NGFI-A 结合蛋白 2 (Nab2) 的 MSN 亚型特异性双向表达的发现。使用 CRISPR 激活和干扰 (CRISPRa 和 CRISPRi) 工具结合 Nab2 或 Egr3 靶向的 sgRNA,我们模拟了 Neuro2a 细胞中的这些双向变化。此外,我们研究了雄性小鼠反复接触可卡因后 NAc 中组蛋白赖氨酸脱甲基酶 Kdm1a 、 Kdm6a 和 Kdm5c 的 D1-MSN 和 D2-MSN 特异性表达变化。由于 Kdm1a 在 D1-MSN 和 D2-MSN 中表现出双向表达模式,就像 Egr3 一样,我们开发了一种光诱导的 Opto-CRISPR-KDM1a 系统。我们能够下调 Neuro2A 细胞中的 Egr3 和 Nab2 转录本,并引起与我们在小鼠反复接触可卡因模型的 D1-MSN 和 D2-MSN 中观察到的类似的双向表达变化。相反,我们的 Opto-CRISPR-p300 激活系统诱导了 Egr3 和 Nab2 转录本并引起相反的双向转录调控。我们的研究揭示了可卡因作用中特定 NAc MSN 中 Nab2 和 Egr3 的表达模式,并使用 CRISPR 工具进一步模拟这些表达模式。
香蕉(Musa spp.),包括芭蕉,是亚热带和热带地区 140 多个国家种植的主要粮食和经济作物之一,全球年产量约为 1.53 亿吨,养活了约 4 亿人。尽管香蕉种植广泛且适应多种环境,但其生产面临着农业景观中经常共存的病原体和害虫的重大挑战。基于 CRISPR/Cas 的基因编辑的最新进展提供了变革性解决方案,可提高香蕉的恢复力和生产力。肯尼亚国际热带农业研究所的研究人员已成功利用基因编辑赋予香蕉对香蕉枯萎病 (BXW) 等疾病的抗性,方法是针对易感基因,并通过破坏病毒序列来抵抗香蕉条纹病毒 (BSV)。其他突破包括开发半矮化植物和增加 β-胡萝卜素含量。此外,经菲律宾监管部门批准,已开发出不易褐变的香蕉以减少食物浪费。香蕉基因编辑的未来前景一片光明,基于 CRISPR 的基因激活 (CRISPRa) 和抑制 (CRISPRi) 技术有望提高抗病性。Cas-CLOVER 系统为 CRISPR/Cas9 提供了一种精确的替代方法,证明了成功生成了基因编辑的香蕉突变体。精准遗传学与传统育种的结合,以及采用无转基因编辑策略,将是充分发挥基因编辑香蕉潜力的关键。作物基因编辑的未来前景令人振奋,可以生产出在不同的农业生态区茁壮成长、营养价值极高的香蕉,最终使农民和消费者受益。本文强调了 CRISPR/Cas 技术在提高香蕉的抗逆性、产量和营养品质方面的关键作用,对全球粮食安全具有重要意义。