两种耕作系统都使用 [ 表 1 ]。• 大豆种植后的残留物水平可能足以满足减少某些地点土壤侵蚀的要求,但冬季分解以及任何秋耕或春耕 - 甚至种植操作 - 都将轻易破坏大量残留物,因为它们很脆弱 [ 表 2;UWEX ]。因此,连续种植大豆的免耕系统可能是唯一符合保护性耕作系统所要求的 30% 地表残留物覆盖标准的系统 [ 表 1 ]。• 圆盘耙和凿犁等耕作机具将覆盖更多扁平、易碎的大豆残留物,而不是更坚固、更直立的玉米和高粱残留物。表 2 中的计算结果给出了当依次使用各种耕作机具时,从秋收到种植后玉米和大豆的残留物损失的估算示例。这些计算值小于使用单个农具一次计算的值 [ 表 3 ],并且毫无疑问,使用各种农具进行多次耕作可大大减少任何作物的残留物覆盖率。
摘要 过去二十年,作物改良的若干前沿技术得到了快速发展和应用,这些技术为选择具有更好遗传特性的改良育种系带来了速度、精度和成本效益。需要提及的几项此类技术包括准确、高效地表征不同基因库种质、高通量测序和基因分型、快速世代推进、基于现代测序的性状定位和基因发现,随后识别出优良单倍型、基因组选择、基因编辑、正向育种和多组学方法,包括更好的生物信息学工具/软件。虽然各种性状(尤其是复杂性状)的表型分析方案仍有改进空间,但上述前沿技术为提高开发具有未来性状的新品种的精度和速度提供了巨大的机会,以确保不同作物的可持续性。利用一个共同平台大规模集成和使用这些技术,为作物的可持续发展提供完美支持。
张勤博士是华盛顿州立大学 (WSU) 精准农业与自动化系统中心主任和生物系统工程系农业自动化教授。他的研究兴趣包括农业自动化、智能农业机械、农业机器人和精准农业。在加入 WSU 教职之前,他是伊利诺伊大学香槟分校的教授,致力于农业机械化和自动化解决方案的开发。他撰写了 2 本教科书和 6 个独立的书籍章节,编辑了 2 部技术书籍和 2 部会议论文集,发表了 125 篇同行评审期刊文章,在国内和国际专业会议上发表了 200 多篇论文,并获得了 10 项美国专利。他目前是《农业计算机和电子技术》的主编和 CIGR(国际农业和生物系统工程委员会)第三部分(植物生产)主席。张博士曾多次应邀在北美、欧洲和亚洲的 18 所大学、9 所研究机构和 11 家工业公司举办研讨会和开设短期课程,还曾应邀在 14 次国际技术会议上发表主题演讲。
我保证此作物计划真实准确,准确反映了我农场的生产区域。我理解我有责任向康涅狄格州农业部提供最新的作物计划,并向我农场参与的每个农贸市场提供一份副本。我理解,要有效参与农贸市场营养计划和认证农贸市场,必须有最新的作物计划。未能维护最新的作物计划可能会导致被该计划开除。我理解,任何不是我种植的康涅狄格州农产品(由 CGS 第 22-6r (7) 条定义)如果运往认证的康涅狄格州农贸市场,则应根据 CGS 第 22-38 条贴上相应的标签。
我们在此提出了一种 5G 育种方法,为作物改良带来急需的颠覆性变化。这 5G 是基因组组装、种质表征、基因功能鉴定、基因组育种 (GB) 和基因编辑 (GE)。我们认为,重要的是要有每种作物的基因组组装,以及在测序和农学水平上表征的种质的深度收集,以识别标记-性状关联和优良单倍型。系统生物学和基于测序的映射方法可用于识别涉及导致性状表达的途径的基因,从而为目标性状提供诊断标记。这些基因、标记、单倍型和全基因组测序数据可与快速循环育种策略结合用于 GB 和 GE 方法。
我们在此提出了一种 5G 育种方法,为作物改良带来急需的颠覆性变化。这 5G 是基因组组装、种质表征、基因功能鉴定、基因组育种 (GB) 和基因编辑 (GE)。我们认为,重要的是要有每种作物的基因组组装,以及在测序和农学水平上表征的种质的深度收集,以识别标记-性状关联和优良单倍型。系统生物学和基于测序的映射方法可用于识别涉及导致性状表达的途径的基因,从而为目标性状提供诊断标记。这些基因、标记、单倍型和全基因组测序数据可与快速循环育种策略结合用于 GB 和 GE 方法。